Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732620

RESUMO

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Assuntos
Neoplasias , Fator de Transcrição STAT5 , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo
2.
Angew Chem Int Ed Engl ; 56(25): 7252-7256, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28510365

RESUMO

A novel palladium(0)-catalyzed intermolecular arylative dearomatization of α-naphthols and subsequent aza-Michael reaction is described. Two adjacent stereocenters were constructed efficiently through consecutive arylative dearomatization and Michael addition reactions. By utilizing this method, structurally diverse benzomesembrine derivatives were synthesized with excellent yields and chemoselectivity. The benzomesembrine products were shown to undergo versatile functional-group transformations.

3.
Angew Chem Int Ed Engl ; 56(12): 3237-3241, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28067451

RESUMO

An Ir-catalyzed intermolecular asymmetric dearomatization reaction of ß-naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized ß-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee. The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.

4.
Angew Chem Int Ed Engl ; 56(26): 7440-7443, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28466512

RESUMO

A highly efficient synthesis of the enantioenriched tetrahydro-ß-carbolines was developed by using a chiral phosphoric acid catalyzed Pictet-Spengler reaction of indolyl dihydropyridines. The reaction proceeds under mild reaction conditions to afford the desired chiral tetrahydro-ß-carbolines in good to excellent yields (up to 96 %) and high enantioselectivities (up to 99 % ee). With this method, a formal synthesis of tangutorine and a total synthesis of deplancheine were achieved in a highly efficient manner.

5.
Chemistry ; 22(31): 10813-6, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27171171

RESUMO

The rapid and direct asymmetric synthesis of 3-(3a-indolyl)hexahydropyrroloindoline motifs is an extremely important part of the total synthesis of several alkaloid structures. Herein, an intermolecular, asymmetric cascade dearomatization reaction of indole acetamides with 3-indolylphenyliodonium salts has been developed. This protocol provides a straightforward access to 3-(3a-indolyl)hexahydropyrroloindolines bearing an all-carbon quaternary stereocenter at the C3 position of the indoline ring with high enantioselectivities. The utility of the protocol has been demonstrated by the formal asymmetric synthesis of folicanthine.


Assuntos
Acetamidas/química , Cobre/química , Indóis/química , Catálise , Estrutura Molecular , Estereoisomerismo
6.
Angew Chem Int Ed Engl ; 55(48): 15137-15141, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27791314

RESUMO

The first Pd0 -catalyzed intermolecular arylative dearomatization of ß-naphthols with aryl halides is described. It was found that Q-Phos could facilitate the palladium-catalyzed cross-coupling-type dearomatization of ß-naphthols, while avoiding O-arylation, to construct 2-naphthalenones in excellent yields and with high chemoselectivity.

7.
J Am Chem Soc ; 136(44): 15469-72, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25308898

RESUMO

A novel Pd(0)-catalyzed intramolecular arylative dearomatization of para-aminophenol derivatives is described. In the presence of 1.25 mol % [Pd(C3H5)Cl]2 and 3.75 mol % RuPhos, the arylative dearomatization reaction proceeds smoothly for a broad range of substrates, offering an efficient synthetic route to erythrinane derivatives in excellent yields.


Assuntos
Aminofenóis/química , Paládio/química , Catálise
8.
J Org Chem ; 79(17): 8440-6, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25093760

RESUMO

Highly diastereoselective intramolecular trapping of ammonium ylides with enones has been developed through a Rh(II)/Brønsted acid cocatalytic strategy. This process allows rapid and efficient construction of N-unprotected polyfunctional 2,2,3-trisubstituted indolines in moderate to good yields with excellent diastereoselectivity.


Assuntos
Ácidos/química , Compostos de Amônio/química , Indóis/síntese química , Rutênio/química , Catálise , Indóis/química , Estrutura Molecular , Estereoisomerismo
9.
J Med Chem ; 66(4): 2717-2743, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36735833

RESUMO

STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.


Assuntos
Leucemia Mieloide Aguda , Fator de Transcrição STAT5 , Humanos , Animais , Camundongos , Fator de Transcrição STAT5/metabolismo , Ligantes , Leucemia Mieloide Aguda/tratamento farmacológico , Domínios de Homologia de src , Linhagem Celular
10.
ACS Med Chem Lett ; 12(6): 996-1004, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141084

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. We report herein our extensive in vitro and in vivo evaluations of SD-91, the product of the hydrolysis of our previously reported STAT3 degrader SD-36. SD-91 binds to STAT3 protein with a high affinity and displays >300-fold selectivity over other STAT family protein members. SD-91 potently and effectively induces degradation of STAT3 protein and displays a high selectivity over other STAT members and >7000 non-STAT proteins in cells. A single administration of SD-91 selectively depletes STAT3 protein in tumor tissues with a persistent effect. SD-91 achieves complete and long-lasting tumor regression in the MOLM-16 xenograft model in mice even with weekly administration. Hence, SD-91 is a potent, highly selective, and efficacious STAT3 degrader for extensive evaluations for the treatment of human cancers and other diseases for which STAT3 plays a key role.

11.
Nat Commun ; 10(1): 3150, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316064

RESUMO

Asymmetric dearomatization reactions have recently emerged as a powerful tool for the rapid build-up of the molecular complexity. Chiral three-dimensional polycyclic molecules bearing contiguous stereogenic centers can be synthesized from readily available planar aromatic feedstocks. Here we report that an intermolecular asymmetric dearomatization reaction of α-naphthols bearing a tethered nucleophile at the C4 position of the naphthol ring is achieved by a chiral phosphoric acid. The reaction proceeds via a highly chemo- and regioselective aminative dearomatization/Michael addition sequence, affording a wide array of functionalized cyclic ketones in good yields (up to 93%) with excellent enantioselectivity (up to >99% ee). The catalyst loading can be reduced to 0.1 mol%. Preliminary mechanistic investigations identify that the enantioselectivity is established in the dearomatization step, while the Michael addition is the rate-limiting step. A working model accounting for the origin of the stereochemistry is proposed based on DFT calculations.

12.
J Med Chem ; 62(24): 11280-11300, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31747516

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and an attractive therapeutic target for cancer and other human diseases. Despite 20 years of persistent research efforts, targeting STAT3 has been very challenging. We report herein the structure-based discovery of potent small-molecule STAT3 degraders based upon the proteolysis targeting chimera (PROTAC) concept. We first designed SI-109 as a potent, small-molecule inhibitor of the STAT3 SH2 domain. Employing ligands for cereblon/cullin 4A E3 ligase and SI-109, we obtained a series of potent PROTAC STAT3 degraders, exemplified by SD-36. SD-36 induces rapid STAT3 degradation at low nanomolar concentrations in cells and fails to degrade other STAT proteins. SD-36 achieves nanomolar cell growth inhibitory activity in leukemia and lymphoma cell lines with high levels of phosphorylated STAT3. A single dose of SD-36 results in complete STAT3 protein degradation in xenograft tumor tissue and normal mouse tissues. SD-36 achieves complete and long-lasting tumor regression in the Molm-16 xenograft tumor model at well-tolerated dose-schedules. SD-36 is a potent, selective, and efficacious STAT3 degrader.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azocinas/química , Desenho de Fármacos , Descoberta de Drogas , Indóis/química , Indóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Organofosfonatos/química , Proteólise/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos/farmacocinética , Apoptose , Azocinas/farmacocinética , Azocinas/farmacologia , Proliferação de Células , Feminino , Humanos , Indóis/farmacocinética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos SCID , Estrutura Molecular , Organofosfonatos/farmacocinética , Organofosfonatos/farmacologia , Conformação Proteica , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Cell ; 36(5): 498-511.e17, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31715132

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Here we report the discovery of SD-36, a small-molecule degrader of STAT3. SD-36 potently induces the degradation of STAT3 protein in vitro and in vivo and demonstrates high selectivity over other STAT members. Induced degradation of STAT3 results in a strong suppression of its transcription network in leukemia and lymphoma cells. SD-36 inhibits the growth of a subset of acute myeloid leukemia and anaplastic large-cell lymphoma cell lines by inducing cell-cycle arrest and/or apoptosis. SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules. Degradation of STAT3 protein, therefore, is a promising cancer therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Proteólise/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Chem Commun (Camb) ; 53(54): 7553-7556, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28634612

RESUMO

An efficient Pd(0)-catalyzed intramolecular arylative dearomatization of ß-naphthols is described. Using Q-Phos as a ligand, the arylative dearomatization reaction proceeded smoothly affording excellent yields and chemoselectivity even when the catalyst loading was reduced to 0.1 mol%. This method offers an efficient access to a series of structurally diverse spirocarbocycles. Preliminary investigation indicates that an enantioselective reaction is feasible in the presence of a chiral phosphoramidite ligand.

15.
Chem Sci ; 7(5): 3427-3431, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997837

RESUMO

A highly efficient, gold-catalyzed intramolecular dearomatization reaction of naphthols via 5-endo-dig cyclization is described. This facile and direct approach furnishes spirocarbocycles in excellent yields under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA