Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(3-4): 261-272, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446573

RESUMO

SUMO modification regulates diverse cellular processes by targeting hundreds of proteins. However, the limited number of sumoylation enzymes raises the question of how such a large number of substrates are efficiently modified. Specifically, how genome maintenance factors are dynamically sumoylated at DNA replication and repair sites to modulate their functions is poorly understood. Here, we demonstrate a role for the conserved yeast Esc2 protein in this process by acting as a SUMO E2 cofactor. Esc2 is required for genome stability and binds to Holliday junctions and replication fork structures. Our targeted screen found that Esc2 promotes the sumoylation of a Holliday junction dissolution complex and specific replisome proteins. Esc2 does not elicit these effects via stable interactions with substrates or their common SUMO E3. Rather, we show that a SUMO-like domain of Esc2 stimulates sumoylation by exploiting a noncovalent SUMO binding site on the E2 enzyme. This role of Esc2 in sumoylation is required for Holliday junction clearance and genome stability. Our findings thus suggest that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilação/genética , Coenzimas/metabolismo , Instabilidade Genômica/genética , Ligação Proteica , Recombinação Genética , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
Genes Dev ; 34(13-14): 898-912, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439635

RESUMO

Nonscheduled R loops represent a major source of DNA damage and replication stress. Cells have different ways to prevent R-loop accumulation. One mechanism relies on the conserved THO complex in association with cotranscriptional RNA processing factors including the RNA-dependent ATPase UAP56/DDX39B and histone modifiers such as the SIN3 deacetylase in humans. We investigated the function of UAP56/DDX39B in R-loop removal. We show that UAP56 depletion causes R-loop accumulation, R-loop-mediated genome instability, and replication fork stalling. We demonstrate an RNA-DNA helicase activity in UAP56 and show that its overexpression suppresses R loops and genome instability induced by depleting five different unrelated factors. UAP56/DDX39B localizes to active chromatin and prevents the accumulation of RNA-DNA hybrids over the entire genome. We propose that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Genoma/genética , Estruturas R-Loop/genética , Transcrição Gênica/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , Expressão Gênica/genética , Instabilidade Genômica/genética , Humanos , Células K562
3.
J Biol Chem ; 300(1): 105572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110032

RESUMO

Mutations in, or deficiency of, fragile X messenger ribonucleoprotein (FMRP) is responsible for the Fragile X syndrome (FXS), the most common cause for inherited intellectual disability. FMRP is a nucleocytoplasmic protein, primarily characterized as a translation repressor with poorly understood nuclear function(s). We recently reported that FXS patient cells lacking FMRP sustain higher level of DNA double-strand breaks (DSBs) than normal cells, specifically at sequences prone to forming R-loops, a phenotype further exacerbated by DNA replication stress. Moreover, expression of FMRP, and not an FMRPI304N mutant known to cause FXS, reduced R-loop-associated DSBs. We subsequently reported that recombinant FMRP directly binds R-loops, primarily through the carboxyl terminal intrinsically disordered region. Here, we show that FMRP directly interacts with an RNA helicase, DHX9. This interaction, which is mediated by the amino terminal structured domain of FMRP, is reduced with FMRPI304N. We also show that FMRP inhibits DHX9 helicase activity on RNA:DNA hybrids and the inhibition is also dependent on the amino terminus. Furthermore, the FMRPI304N mutation causes both FMRP and DHX9 to persist on the chromatin in replication stress. These results suggest an antagonistic relationship between FMRP and DHX9 at the chromatin, where their proper interaction leads to dissociation of both proteins from the fully resolved R-loop. We propose that the absence or the loss of function of FMRP leads to persistent presence of DHX9 or both proteins, respectively, on the unresolved R-loop, ultimately leading to DSBs. Our study sheds new light on our understanding of the genome functions of FMRP.


Assuntos
RNA Helicases DEAD-box , Replicação do DNA , Proteína do X Frágil da Deficiência Intelectual , Proteínas de Neoplasias , Estresse Fisiológico , Humanos , Cromatina/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA/biossíntese , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Hibridização de Ácido Nucleico , Estruturas R-Loop , RNA/química , RNA/metabolismo
4.
J Virol ; : e0078624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916398

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE: SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.

5.
Genes Dev ; 31(5): 503-510, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336516

RESUMO

DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5' strand at break ends. Dna2, a flap endonuclease with 5'-3' helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5' flap cleavage near a single-strand-double strand junction while attenuating 3' flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5' strand specificity of end resection.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Região 5'-Flanqueadora/genética , Trifosfato de Adenosina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética
7.
Genes Dev ; 30(6): 687-99, 2016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26966246

RESUMO

We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1-MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.


Assuntos
RNA Helicases DEAD-box/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Reparo do DNA/genética , Epistasia Genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Mitose , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 298(7): 102092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654140

RESUMO

Homologous recombination repairs DNA breaks and sequence gaps via the production of joint DNA intermediates such as Holliday junctions. Dissolving Holliday junctions into linear DNA repair products requires the activity of the Sgs1 helicase in yeast and of its homologs in other organisms. Recent studies suggest that the functions of these conserved helicases are regulated by sumoylation; however, the mechanisms that promote their sumoylation are not well understood. Here, we employed in vitro sumoylation systems and cellular assays to determine the roles of DNA and the scaffold protein Esc2 in Sgs1 sumoylation. We show that DNA binding enhances Sgs1 sumoylation in vitro. In addition, we demonstrate the Esc2's midregion (MR) with DNA-binding activity is required for Sgs1 sumoylation. Unexpectedly, we found that the sumoylation-promoting effect of Esc2-MR is DNA independent, suggesting a second function for this domain. In agreement with our biochemical data, we found the Esc2-MR domain, like its SUMO E2-binding C-terminal domain characterized in previous studies, is required for proficient sumoylation of Sgs1 and its cofactors, Top3 and Rmi1, in cells. Taken together, these findings provide evidence that while DNA binding enhances Sgs1 sumoylation, Esc2-based stimulation of this modification is mediated by two distinct domains.


Assuntos
Proteínas de Ciclo Celular , RecQ Helicases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
9.
EMBO J ; 38(21): e102718, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31544964

RESUMO

DNA repair via homologous recombination (HR) is indispensable for genome integrity and cell survival but if unrestrained can result in undesired chromosomal rearrangements. The regulatory mechanisms of HR are not fully understood. Cyclic GMP-AMP synthase (cGAS) is best known as a cytosolic innate immune sensor critical for the outcome of infections, inflammatory diseases, and cancer. Here, we report that cGAS is primarily a chromatin-bound protein that inhibits DNA repair by HR, thereby accelerating genome destabilization, micronucleus generation, and cell death under conditions of genomic stress. This function is independent of the canonical STING-dependent innate immune activation and is physiologically relevant for irradiation-induced depletion of bone marrow cells in mice. Mechanistically, we demonstrate that inhibition of HR repair by cGAS is linked to its ability to self-oligomerize, causing compaction of bound template dsDNA into a higher-ordered state less amenable to strand invasion by RAD51-coated ssDNA filaments. This previously unknown role of cGAS has implications for understanding its involvement in genome instability-associated disorders including cancer.


Assuntos
Morte Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Instabilidade Genômica , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Reparo de DNA por Recombinação , Animais , Núcleo Celular/genética , Cromatina/genética , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/genética , Transdução de Sinais
10.
Genes Dev ; 29(17): 1777-88, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341555

RESUMO

Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Animais , Reparo do DNA , Replicação do DNA/genética , Eucariotos/enzimologia , Anemia de Fanconi/enzimologia , Anemia de Fanconi/genética , Genoma/genética , Humanos , Plantas/enzimologia
11.
Genes Dev ; 29(10): 1000-5, 2015 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956905

RESUMO

Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , RNA Helicases DEAD-box/metabolismo , DNA/genética , Reparo do DNA , Genoma Fúngico/genética , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Cell ; 56(3): 436-445, 2014 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439736

RESUMO

Conserved, multitasking DNA helicases mediate diverse DNA transactions and are relevant for human disease pathogenesis. These helicases and their regulation help maintain genome stability during DNA replication and repair. We show that the structural maintenance of chromosome complex Smc5-Smc6 restrains the replication fork regression activity of Mph1 helicase, but not its D loop disruptive activity. This regulatory mechanism enables flexibility in replication fork repair without interfering with DNA break repair. In vitro studies find that Smc5-Smc6 binds to a Mph1 region required for efficient fork regression, preventing assembly of Mph1 oligomers at the junction of DNA forks. In vivo impairment of this regulatory mechanism compensates for the inactivation of another fork regression helicase and increases reliance on joint DNA structure removal or avoidance. Our findings provide molecular insights into replication fork repair regulation and uncover a role of Smc5-Smc6 in directing Mph1 activity toward a specific biochemical outcome.


Assuntos
Proteínas de Ciclo Celular/química , RNA Helicases DEAD-box/química , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Fúngico/biossíntese , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Stem Cells ; 38(1): 118-133, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621984

RESUMO

Nerve regeneration is blocked after spinal cord injury (SCI) by a complex myelin-associated inhibitory (MAI) microenvironment in the lesion site; however, the underlying mechanisms are not fully understood. During the process of neural stem cell (NSC) differentiation, pathway inhibitors were added to quantitatively assess the effects on neuronal differentiation. Immunoprecipitation and lentivirus-induced overexpression were used to examine effects in vitro. In vivo, animal experiments and lineage tracing methods were used to identify nascent neurogenesis after SCI. In vitro results indicated that myelin inhibited neuronal differentiation by activating the epidermal growth factor receptor (EGFR)-extracellular-regulated kinase (ERK) signaling cascade. Subsequently, we found that tripartite motif (TRIM) 32, a neuronal fate-determining factor, was inhibited. Moreover, inhibition of EGFR-ERK promoted TRIM32 expression and enhanced neuronal differentiation in the presence of myelin. We further demonstrated that ERK interacts with TRIM32 to regulate neuronal differentiation. In vivo results indicated that EGFR-ERK blockade increased TRIM32 expression and promoted neurogenesis in the injured area, thus enhancing functional recovery after SCI. Our results showed that EGFR-ERK blockade antagonized MAI of neuronal differentiation of NSCs through regulation of TRIM32 by ERK. Collectively, these findings may provide potential new targets for SCI repair.


Assuntos
Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Traumatismos da Medula Espinal/metabolismo , Animais , Células Cultivadas , Cetuximab/farmacologia , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Flavonoides/farmacologia , Gefitinibe/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
14.
Nucleic Acids Res ; 47(21): 11225-11237, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544923

RESUMO

Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.


Assuntos
DNA de Cadeia Simples/metabolismo , DNA/metabolismo , RecQ Helicases/análise , RecQ Helicases/metabolismo , Imagem Individual de Molécula , Pareamento de Bases , Síndrome de Bloom/genética , DNA/química , Reparo do DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples/química , Recombinação Homóloga , Humanos , Modelos Moleculares , Rad51 Recombinase/metabolismo , RecQ Helicases/química , RecQ Helicases/genética , Proteína de Replicação A/metabolismo , Imagem Individual de Molécula/métodos
15.
Chaos ; 30(11): 113136, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261331

RESUMO

Temporality is an essential characteristic of many real-world networks and dramatically affects the spreading dynamics on networks. In this paper, we propose an information spreading model on temporal networks with heterogeneous populations. Individuals are divided into activists and bigots to describe the willingness to accept the information. Through a developed discrete Markov chain approach and extensive numerical simulations, we discuss the phase diagram of the model and the effects of network temporality. From the phase diagram, we find that the outbreak phase transition is continuous when bigots are relatively rare, and a hysteresis loop emerges when there are a sufficient number of bigots. The network temporality does not qualitatively alter the phase diagram. However, we find that the network temporality affects the spreading outbreak size by either promoting or suppressing, which relies on the heterogeneities of population and of degree distribution. Specifically, in networks with homogeneous and weak heterogeneous degree distribution, the network temporality suppresses (promotes) the information spreading for small (large) values of information transmission probability. In networks with strong heterogeneous degree distribution, the network temporality always promotes the information spreading when activists dominate the population, or there are relatively fewer activists. Finally, we also find the optimal network evolution scale, under which the network information spreading is maximized.

16.
J Biol Chem ; 293(44): 17061-17069, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224356

RESUMO

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic resection of the DNA break ends. The current model, being based primarily on genetic analyses in Saccharomyces cerevisiae and companion biochemical reconstitution studies, posits that end resection proceeds in two distinct stages. Specifically, the initiation of resection is mediated by the nuclease activity of the Mre11-Rad50-Xrs2 (MRX) complex in conjunction with its cofactor Sae2, and long-range resection is carried out by exonuclease 1 (Exo1) or the Sgs1-Top3-Rmi1-Dna2 ensemble. Using fully reconstituted systems, we show here that DNA with ends occluded by the DNA end-joining factor Ku70-Ku80 becomes a suitable substrate for long-range 5'-3' resection when a nick is introduced at a locale proximal to one of the Ku-bound DNA ends. We also show that Sgs1 can unwind duplex DNA harboring a nick, in a manner dependent on a species-specific interaction with the ssDNA-binding factor replication protein A (RPA). These biochemical systems and results will be valuable for guiding future endeavors directed at delineating the mechanistic intricacy of DNA end resection in eukaryotes.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/genética , Recombinação Homóloga , RecQ Helicases/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochem Biophys Res Commun ; 510(1): 97-103, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30661787

RESUMO

SRPIN340, a selective serine-arginine protein kinase 1/2 (SRPK1/2) inhibitor, has been shown to have antiviral and anti-angiogenesis effects. However, its role in the heart is unknown. The present study explored the role of SRPIN340 in myocardial protection and the related mechanisms. During challenge with H2O2, cardiomyocytes (CMs) pretreated with SRPIN340 showed strikingly more injury tolerance, which was manifested as reduced lactate dehydrogenase (LDH) release and lower apoptotic index. Further research showed that SRPIN340 activated AKT under basal conditions, and AKT inhibition abolished the protective effects of SRPIN340 treatment during H2O2 stress. The protective effect of SRPIN340 was also demonstrated in perfused rat hearts subjected to ischemia/reperfusion (I/R). Collectively, our results reveal the beneficial effects of SRPIN340 against H2O2-induced oxidative damage in CMs and I/R-induced injury in a Langendorff heart model, supporting a potential application of SRPIN340 in the clinically relevant context of reperfusion. The effectiveness of SRPIN340 may be attributed to AKT signal activation.


Assuntos
Miocárdio , Niacinamida/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Piperidinas/uso terapêutico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
18.
J Mol Cell Cardiol ; 118: 193-207, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29626503

RESUMO

Heat shock transcription factor 1 (HSF1) deficiency aggravates cardiac remodeling under pressure overload. However, the mechanism is still unknown. Here we employed microRNA array analysis of the heart tissue of HSF1-knockout (KO) mice to investigate the potential roles of microRNAs in pressure overload-induced cardiac remodeling under HSF-1 deficiency, and the profiles of 478 microRNAs expressed in the heart tissues of adult HSF1-KO mice were determined. We found that the expression of 5 microRNAs was over 2-fold higher expressed in heart tissues of HSF1-KO mice than in those of wild-type (WT) control mice. Of the overexpressed microRNAs, miR-195a-3p had the highest expression level in HSF1-null endothelial cells (ECs). Induction with miR-195a-3p in ECs significantly suppressed CD31 and VEGF, promoted AngII-induced EC apoptosis, and impaired capillary-like tube formation. In vivo, the upregulation of miR-195a-3p accentuated cardiac hypertrophy, increased the expression of ß-MHC and ANP, and compromised systolic function in mice under pressure overload induced by transverse aortic constriction (TAC). By contrast, antagonism of miR-195a-3p had the opposite effect on HSF1-KO mice. Further experiments confirmed that AMPKα2 was the direct target of miR-195a-3p. AMPKα2 overexpression rescued the reduction of eNOS and VEGF, and the impairment of angiogenesis that was induced by miR-195a-3p. In addition, upregulation of AMPKα2 in the myocardium of HSF1-null mice by adenovirus-mediated gene delivery enhanced CD31, eNOS and VEGF, reduced ß-MHC and ANP, alleviated pressure overload-mediated cardiac hypertrophy and restored cardiac function. Our findings revealed that the upregulation of miR-195a-3p due to HSF1 deficiency impaired cardiac angiogenesis by regulating AMPKα2/VEGF signaling, which disrupted the coordination between the myocardial blood supply and the adaptive hypertrophic response and accelerated the transition from cardiac hypertrophy to heart failure in response to pressure overload.


Assuntos
Cardiomegalia/patologia , Células Endoteliais/metabolismo , Insuficiência Cardíaca/patologia , Fatores de Transcrição de Choque Térmico/deficiência , MicroRNAs/metabolismo , Miocárdio/patologia , Neovascularização Fisiológica , Pressão , Regiões 3' não Traduzidas/genética , Adenilato Quinase/metabolismo , Animais , Apoptose , Sequência de Bases , Cardiomegalia/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Regulação para Cima , Remodelação Ventricular
19.
Nucleic Acids Res ; 42(17): 11083-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25200081

RESUMO

BLM, a RecQ family DNA helicase mutated in Bloom's Syndrome, participates in homologous recombination at two stages: 5' DNA end resection and double Holliday junction dissolution. BLM exists in a complex with Topo IIIα, RMI1 and RMI2. Herein, we address the role of Topo IIIα and RMI1-RMI2 in resection using a reconstituted system with purified human proteins. We show that Topo IIIα stimulates DNA unwinding by BLM in a manner that is potentiated by RMI1-RMI2, and that the processivity of resection is reliant on the Topo IIIα-RMI1-RMI2 complex. Topo IIIα localizes to the ends of double-strand breaks, thus implicating it in the recruitment of resection factors. While the single-stranded DNA binding protein RPA plays a major role in imposing the 5' to 3' polarity of resection, Topo IIIα also makes a contribution in this regard. Moreover, we show that DNA2 stimulates the helicase activity of BLM. Our results thus uncover a multifaceted role of the Topo IIIα-RMI1-RMI2 ensemble and of DNA2 in the DNA resection reaction.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas de Transporte/fisiologia , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , DNA Topoisomerases Tipo I/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/metabolismo , Humanos , Proteínas Nucleares/fisiologia
20.
J Biol Chem ; 288(20): 14221-14227, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23543748

RESUMO

The conserved BTR complex, composed of the Bloom's syndrome helicase (BLM), topoisomerase IIIα, RMI1, and RMI2, regulates homologous recombination in favor of non-crossover formation via the dissolution of the double Holliday Junction (dHJ). Here we show enhancement of the BTR-mediated dHJ dissolution reaction by the heterotrimeric single-stranded DNA binding protein replication protein A (RPA). Our results suggest that RPA acts by sequestering a single-stranded DNA intermediate during dHJ dissolution. We provide evidence that RPA physically interacts with RMI1. The RPA interaction domain in RMI1 has been mapped, and RMI1 mutants impaired for RPA interaction have been generated. Examination of these mutants ascertains the significance of the RMI1-RPA interaction in dHJ dissolution. Our results thus implicate RPA as a cofactor of the BTR complex in dHJ dissolution.


Assuntos
Proteínas de Transporte/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Sequência de Aminoácidos , DNA/genética , Reparo do DNA , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA