Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7922): 405-412, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922506

RESUMO

After cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death1,2. Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology3. To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges. Here we describe OrganEx, an adaptation of the BrainEx extracorporeal pulsatile-perfusion system and cytoprotective perfusate for porcine whole-body settings. After 1 h of warm ischaemia, OrganEx application preserved tissue integrity, decreased cell death and restored selected molecular and cellular processes across multiple vital organs. Commensurately, single-nucleus transcriptomic analysis revealed organ- and cell-type-specific gene expression patterns that are reflective of specific molecular and cellular repair processes. Our analysis comprises a comprehensive resource of cell-type-specific changes during defined ischaemic intervals and perfusion interventions spanning multiple organs, and it reveals an underappreciated potential for cellular recovery after prolonged whole-body warm ischaemia in a large mammal.


Assuntos
Sobrevivência Celular , Citoproteção , Perfusão , Suínos , Isquemia Quente , Animais , Morte Celular , Perfilação da Expressão Gênica , Isquemia/metabolismo , Isquemia/patologia , Isquemia/prevenção & controle , Especificidade de Órgãos , Perfusão/métodos , Suínos/anatomia & histologia
2.
Epilepsia ; 64 Suppl 3: S62-S71, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36780237

RESUMO

A lot of mileage has been made recently on the long and winding road toward seizure forecasting. Here we briefly review some selected milestones passed along the way, which were discussed at the International Conference for Technology and Analysis of Seizures-ICTALS 2022-convened at the University of Bern, Switzerland. Major impetus was gained recently from wearable and implantable devices that record not only electroencephalography, but also data on motor behavior, acoustic signals, and various signals of the autonomic nervous system. This multimodal monitoring can be performed for ultralong timescales covering months or years. Accordingly, features and metrics extracted from these data now assess seizure dynamics with a greater degree of completeness. Most prominently, this has allowed the confirmation of the long-suspected cyclical nature of interictal epileptiform activity, seizure risk, and seizures. The timescales cover daily, multi-day, and yearly cycles. Progress has also been fueled by approaches originating from the interdisciplinary field of network science. Considering epilepsy as a large-scale network disorder yielded novel perspectives on the pre-ictal dynamics of the evolving epileptic brain. In addition to discrete predictions that a seizure will take place in a specified prediction horizon, the community broadened the scope to probabilistic forecasts of a seizure risk evolving continuously in time. This shift of gears triggered the incorporation of additional metrics to quantify the performance of forecasting algorithms, which should be compared to the chance performance of constrained stochastic null models. An imminent task of utmost importance is to find optimal ways to communicate the output of seizure-forecasting algorithms to patients, caretakers, and clinicians, so that they can have socioeconomic impact and improve patients' well-being.


Assuntos
Epilepsia , Convulsões , Humanos , Convulsões/diagnóstico , Encéfalo , Previsões , Eletroencefalografia
3.
Cereb Cortex ; 32(17): 3726-3735, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34921723

RESUMO

We test the performance of a novel operator-independent EEG-based method for passive identification of the central sulcus (CS) and sensorimotor (SM) cortex. We studied seven patients with intractable epilepsy undergoing intracranial EEG (icEEG) monitoring, in whom CS localization was accomplished by standard methods. Our innovative approach takes advantage of intrinsic properties of the primary motor cortex (MC), which exhibits enhanced icEEG band-power and coherence across the CS. For each contact, we computed a composite power, coherence, and entropy values for activity in the high gamma band (80-115) Hz of 6-10 min of NREM sleep. Statistically transformed EEG data values that did not reach a threshold (th) were set to 0. We computed a metric M based on the transformed values and the mean Euclidian distance of each contact from contacts with Z-scores higher than 0. The last step was implemented to accentuate local network activity. The SM cortex exhibited higher EEG-band-power than non-SM cortex (P < 0.0002). There was no significant difference between the motor/premotor and sensory cortices (P < 0.47). CS was localized in all patients with 0.4 < th < 0.6. The primary hand and leg motor areas showed the highest metric values followed by the tongue motor area. Higher threshold values were specific (94%) for the anterior bank of the CS but not sensitive (42%). Intermediate threshold values achieved an acceptable trade-off (0.4: 89% specific and 70% sensitive).


Assuntos
Epilepsia Resistente a Medicamentos , Córtex Motor , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Eletroencefalografia/métodos , Humanos , Sono
4.
Nutr Neurosci ; 25(1): 64-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31900092

RESUMO

Background: Glutamine synthetase (GS) is the only enzyme known to synthesize significant amounts of glutamine in mammals, and loss of GS in the hippocampus has been implicated in the pathophysiology of medication refractory mesial temporal lobe epilepsy (MTLE). Moreover, loss-of-function mutations of the GS gene causes severe epileptic encephalopathy, and supplementation with glutamine has been shown to normalize EEG and possibly improve the outcome in these patients. Here we examined whether oral glutamine supplementation is an effective treatment for MTLE by assessing the frequency and severity of seizures after supplementation in a translationally relevant model of the disease.Methods: Male Sprague Dawley rats (380-400 g) were allowed to drink unlimited amounts of glutamine in water (3.6% w/v; n = 8) or pure water (n = 8) for several weeks. Ten days after the start of glutamine supplementation, GS was chronically inhibited in the hippocampus to induce MTLE. Continuous video-intracranial EEG was collected for 21 days to determine the frequency and severity of seizures.Results: While there was no change in seizure frequency between the groups, the proportion of convulsive seizures was significantly higher in glutamine treated animals during the first three days of GS inhibition.Conclusion: The results suggest that oral glutamine supplementation transiently increases seizure severity in the initial stages of an epilepsy model, indicating a potential role of the amino acid in seizure propagation and epileptogenesis.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Glutamina/administração & dosagem , Convulsões/induzido quimicamente , Índice de Gravidade de Doença , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/etiologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/metabolismo , Hipocampo/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley
5.
Epilepsia ; 62(11): 2858-2870, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536233

RESUMO

OBJECTIVE: The astroglial enzyme glutamine synthetase (GS) is deficient in small loci in the brain in adult patients with different types of focal epilepsy; however, the role of this deficiency in the pathogenesis of epilepsy has been difficult to assess due to a lack of sufficiently sensitive and specific animal models. The aim of this study was to develop an in vivo approach for precise and specific deletions of the GS gene in the postnatal brain. METHODS: We stereotaxically injected various adeno-associated virus (AAV)-Cre recombinase constructs into the hippocampal formation and neocortex in 22-70-week-old GSflox/flox mice to knock out the GS gene in a specific and focal manner. The mice were subjected to seizure threshold determination, continuous video-electroencephalographic recordings, advanced in vivo neuroimaging, and immunocytochemistry for GS. RESULTS: The construct AAV8-glial fibrillary acidic protein-green fluorescent protein-Cre eliminated GS in >99% of astrocytes in the injection center with a gradual return to full GS expression toward the periphery. Such focal GS deletion reduced seizure threshold, caused spontaneous recurrent seizures, and diminished functional connectivity. SIGNIFICANCE: These results suggest that small loci of GS deficiency in the postnatal brain are sufficient to cause epilepsy and impaired functional connectivity. Additionally, given the high specificity and precise spatial resolution of our GS knockdown approach, we anticipate that this model will be extremely useful for rigorous in vivo and ex vivo studies of astroglial GS function at the brain-region and single-cell levels.


Assuntos
Epilepsia , Doenças Metabólicas , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/genética , Glutamina , Humanos , Camundongos , Convulsões/patologia
6.
Epilepsia ; 62(6): e88-e97, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949690

RESUMO

The objective of this study was to monitor the extracellular brain chemistry dynamics at baseline and in relation to spontaneous seizures in human patients with refractory epilepsy. Thirty patients with drug-resistant focal epilepsy underwent intracranial electroencephalography and concurrent brain microdialysis for up to 8 continuous days. Extracellular brain glutamate, glutamine, and the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine were quantified in the dialysis samples by liquid chromatography-tandem mass spectrometry. Extracellular BCAAs and glutamate were chronically elevated at baseline by approximately 1.5-3-fold in brain regions of seizure onset and propagation versus regions not involved by seizures. Moreover, isoleucine increased significantly above baseline as early as 3 h before a spontaneous seizure. BCAAs play important roles in glutamatergic neurotransmission, mitochondrial function, neurodegeneration, and mammalian target of rapamycin signaling. Because all of these processes have been implicated in epilepsy, the results suggest a novel role of BCAAs in the pathogenesis of spontaneous seizures.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Química Encefálica , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsias Parciais/metabolismo , Convulsões/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Eletrocorticografia , Eletroencefalografia , Espaço Extracelular , Feminino , Ácido Glutâmico/metabolismo , Humanos , Isoleucina/metabolismo , Masculino , Microdiálise , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Adulto Jovem
7.
J Neurosci Res ; 97(11): 1345-1362, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30022509

RESUMO

The cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma-associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.


Assuntos
Astrócitos/fisiologia , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/enzimologia , Glutamato-Amônia Ligase/metabolismo , Animais , Astrócitos/enzimologia , Epilepsia do Lobo Temporal/fisiopatologia , Glutamato-Amônia Ligase/deficiência , Humanos
8.
Epilepsia ; 59(11): 2075-2085, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187919

RESUMO

OBJECTIVE: Studies of infraslow amplitude modulations (<0.15 Hz) of band power time series suggest that these envelope correlations may form a basis for distant spatial coupling in the brain. In this study, we sought to determine how infraslow relationships are affected by antiepileptic drug (AED) taper, time of day, and seizure. METHODS: We studied intracranial electroencephalographic (icEEG) data collected from 13 medically refractory adult epilepsy patients who underwent monitoring at Yale-New Haven Hospital. We estimated the magnitude-squared coherence (MSC) at <0.15 Hz of traditional EEG frequency band power time series for all electrode contact pairs to quantify infraslow envelope correlations between them. We studied, first, hour-long background icEEG epochs before and after AED taper to understand the effect of taper. Second, we analyzed the entire record for each patient to study the effect of time of day. Finally, for each patient, we reviewed the clinical record to find all seizures that were at least 6 hours removed from other seizures and analyzed infraslow envelope MSC before and after them. RESULTS: Infraslow envelope MSC increased slightly, but significantly, after AED taper, and increased on average during the night and decreased during the day. It was also increased significantly in all frequency bands up to 3 hours preseizure and 1 hour postseizure as compared to background icEEG (61 seizures studied). These changes occurred for both daytime and nighttime seizures (28 daytime, 33 nighttime). Interestingly, there was significant spatial variability to these changes, with the seizure onset area peaking at 3 hours preseizure, then showing progressive desynchronization from 3 hours preseizure to 1 hour postseizure. SIGNIFICANCE: Infraslow envelope analysis may be used to understand long-term changes over the course of icEEG monitoring, provide unique insight into interictal electrophysiological changes related to ictogenesis, and contribute to the development of novel seizure forecasting algorithms.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia , Convulsões/fisiopatologia , Adulto , Anticonvulsivantes/uso terapêutico , Ondas Encefálicas/efeitos dos fármacos , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
9.
Yale J Biol Med ; 91(3): 313-321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258318

RESUMO

Objective. The use of cerebrospinal shunts is the standard of care for hydrocephalus. However, shunts are extremely vulnerable to failure and lack noninvasive methods to monitor their viability. We review current shunt technologies and attempts to improve their function. Methods. A PubMed search was performed to find literature on shunts and shunt function. Company brochures and websites were also used. Results. Fixed and variable pressure valves from four major companies are discussed. Also reviewed are siphon resistive devices, intracranial pressure sensors, and recent attempts on the development of cerebrospinal fluid sensors, including a micromechanical flow sensor we have recently developed. Conclusions. While variable pressure valves and siphon resistive devices have both had considerable success in dealing with variable intracranial pressure, a more sophisticated, continuous monitoring system is needed to ensure shunt viability and patient safety. An integrated flow sensor may provide the ability to track fluid flow and determine shunt functionality.


Assuntos
Hidrocefalia/fisiopatologia , Pressão Intracraniana/fisiologia , Derivações do Líquido Cefalorraquidiano , Humanos
10.
Epilepsia ; 58(5): 824-834, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378878

RESUMO

OBJECTIVE: The objective of the present study is to identify novel, time-indexed imaging biomarkers of epileptogenesis in mesial temporal lobe epilepsy (MTLE). METHODS: We used high-resolution brain diffusion tensor imaging (DTI) of the translationally relevant methionine sulfoximine (MSO) brain infusion model of MTLE. MSO inhibits astroglial glutamine synthetase, which is deficient in the epileptogenic hippocampal formation of patients with MTLE. MSO-infused (epileptogenic) rats were compared with phosphate-buffered saline (PBS)-infused (nonepileptogenic) rats at early (3-4 days) and late (6-9 weeks) time points during epileptogenesis. RESULTS: The epileptogenic rats exhibited significant changes in DTI-measured fractional anisotropy (FA) in numerous brain regions versus nonepileptogenic rats. Changes included decreases and increases in FA in regions such as the entorhinal-hippocampal area, amygdala, corpus callosum, thalamus, striatum, accumbens, and neocortex. The FA changes evolved over time as animals transitioned from early to late epileptogenesis. For example, some areas with significant decreases in FA early in epileptogenesis changed to significant increases late in epileptogenesis. Finally, the FA changes significantly correlated with the seizure load. SIGNIFICANCE: Our results suggest (1) that high-resolution DTI can be used for early identification and tracking of the epileptogenic process in MTLE, and (2) that the process identified by DTI is present in multiple brain areas, even though infusion of MSO is restricted to the unilateral entorhinal-hippocampal region.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Animais , Modelos Animais de Doenças , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiopatologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Aumento da Imagem , Masculino , Metionina Sulfoximina , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
12.
J Neurophysiol ; 114(2): 1248-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084904

RESUMO

A widely accepted view is that wakefulness is a state in which the entire cortical mantle is persistently activated, and therefore desynchronized. Consequently, the EEG is dominated by low-amplitude, high-frequency fluctuations. This view is currently under revision because the 1-4 Hz delta rhythm is often evident during "quiet" wakefulness in rodents and nonhuman primates. Here we used intracranial EEG recordings to assess the occurrence of delta rhythm in 18 awake human beings. Our recordings reveal rhythmic delta during wakefulness at 10% of all recording sites. Delta rhythm could be observed in a single cortical lobe or in multiple lobes. Sites with high delta could flip between high and low delta power or could be in a persistently high delta state. Finally, these sites were rarely identified as the sites of seizure onset. Thus rhythmic delta can dominate the background operation and activity of some neocortical circuits in awake human beings.


Assuntos
Córtex Cerebral/fisiologia , Ritmo Delta/fisiologia , Vigília/fisiologia , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/cirurgia , Eletrocorticografia , Eletrodos Implantados , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Convulsões/cirurgia , Adulto Jovem
13.
Epilepsy Behav ; 51: 96-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26262937

RESUMO

The prevalence of depression and suicide is increased in patients with mesial temporal lobe epilepsy (MTLE); however, the underlying mechanism remains unknown. Anhedonia, a core symptom of depression that is predictive of suicide, is common in patients with MTLE. Glutamine synthetase, an astrocytic enzyme that metabolizes glutamate and ammonia to glutamine, is reduced in the amygdala in patients with epilepsy and depression and in suicide victims. Here, we sought to develop a novel model of anhedonia in MTLE by testing the hypothesis that deficiency in glutamine synthetase in the central nucleus of the amygdala (CeA) leads to epilepsy and comorbid anhedonia. Nineteen male Sprague-Dawley rats were implanted with an osmotic pump infusing either the glutamine synthetase inhibitor methionine sulfoximine [MSO (n=12)] or phosphate buffered saline [PBS (n=7)] into the right CeA. Seizure activity was monitored by video-intracranial electroencephalogram (EEG) recordings for 21days after the onset of MSO infusion. Sucrose preference, a measure of anhedonia, was assessed after 21days. Methionine sulfoximine-infused rats exhibited recurrent seizures during the monitoring period and showed decreased sucrose preference over days when compared with PBS-infused rats (p<0.01). Water consumption did not differ between the PBS-treated group and the MSO-treated group. Neurons were lost in the CeA, but not the medial amygdala, lateral amygdala, basolateral amygdala, or the hilus of the dentate gyrus, in the MSO-treated rats. The results suggest that decreased glutamine synthetase activity in the CeA is a possible common cause of anhedonia and seizures in TLE. We propose that the MSO CeA model can be used for mechanistic studies that will lead to the development and testing of novel drugs to prevent seizures, depression, and suicide in patients with TLE.


Assuntos
Tonsila do Cerebelo/enzimologia , Anedonia/fisiologia , Encéfalo/enzimologia , Núcleo Central da Amígdala/enzimologia , Epilepsia do Lobo Temporal/enzimologia , Glutamato-Amônia Ligase/deficiência , Análise de Variância , Anedonia/efeitos dos fármacos , Animais , Encéfalo/fisiopatologia , Comorbidade , Transtorno Depressivo/enzimologia , Modelos Animais de Doenças , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Hipocampo/fisiologia , Masculino , Metionina Sulfoximina/farmacologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/enzimologia
14.
Neurobiol Dis ; 67: 18-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24632421

RESUMO

Mesial temporal lobe epilepsy (MTLE) is one of the most common forms of drug-resistant, localization-related epilepsies in humans. One potential therapeutic target is the brain glutamine-glutamate-GABA metabolic pathway, which is perturbed in patients with MTLE. Loss of glutamine synthetase (GS) in astrocytes may be critically involved in this perturbation, which can be modeled by infusing the GS inhibitor methionine sulfoximine (MSO) into the entorhinal-hippocampal area in rats. Because 5-aminovaleric acid (5-AV) has been implicated in modulation of the glutamine-glutamate-GABA metabolic pathway, we hypothesized that 5-AV would alter the expression of seizures in the MSO model of MTLE. Male Sprague Dawley rats (300-330g) were implanted with an Alzet pump placed subcutaneously in the abdominal region to release either 5-AV (0.05mg/mL, n=6) or phosphate buffered saline (PBS, n=6) at a rate of 2.5µl/h over 28days. Five to 7days after surgery, all rats were implanted with an intracranial pump infusing MSO (2.5mg/mL; 0.25µl/h) unilaterally into the hippocampal formation. Following the second surgery, intracranial EEG was measured from the left and right hemispheres above the dorsal hippocampal formations for a continuous period of 21days. The EEG was correlated with simultaneous video recordings to determine the stage of seizures according to a modified Racine scale. Five-AV-treated rats experienced a 3.5 fold reduction in the number of seizures (6.7±1.4seizures/day) than PBS-treated rats (23.2±6.3seizures/day) during the first 2days following MSO pump placement (p<0.005). Both groups showed similar seizure frequency over days 3-21 (~1seizure/day). However, the fraction of the most severe type of seizures (Racine stages 4 and 5) increased over time in the PBS treated group, but not in the 5-AV treated group. Notably, 5-AV treated rats experienced a 2.3 and 2.6 fold lower fraction of stage 4 and 5 seizures than PBS-treated rats during the 2nd and 3rd weeks of MSO treatment respectively (p<0 .05 and p<0.001 respective to week). Five-AV markedly reduces the number of seizures initially and suppresses the development of the most severe type of seizures in the MSO model of MTLE. These results may have implications for the therapeutic use of 5-AV in treating mesial temporal lobe seizures and for our understanding of the chemical pathology of epileptogenesis and MTLE.


Assuntos
Aminoácidos Neutros/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Convulsões/tratamento farmacológico , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Metionina Sulfoximina , Ratos , Ratos Sprague-Dawley
15.
Epilepsia ; 55(2): 289-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24417694

RESUMO

OBJECTIVE: Secondary generalization of seizures has devastating consequences for patient safety and quality of life. The aim of this intracranial electroencephalography (icEEG) study was to investigate the differences in onset and propagation patterns of temporal lobe seizures that remained focal versus those with secondary generalization, in order to better understand the mechanism of secondary generalization. METHODS: A total of 39 seizures were analyzed in nine patients who met the following criteria: (1) icEEG-video monitoring with at least one secondarily generalized tonic-clonic seizure (GTCS), (2) pathologically proven hippocampal sclerosis, and (3) no seizures for at least 1 year after anteromedial temporal lobe resection. Seizures were classified as focal or secondary generalized by behavioral analysis of video. Onset and propagation patterns were compared by analysis of icEEG. RESULTS: We obtained data from 22 focal seizures without generalization (FS), and 17 GTCS. Seizure-onset patterns did not differ between FS and GTCS, but there were differences in later propagation. All seizures started with low voltage fast activity, except for seven seizures in one patient (six FS, one GTCS), which started with sharply contoured theta activity. Fifteen of 39 seizures started from the hippocampus, and 24 seizures (including six seizures in a patient without hippocampal contacts) started from other medial temporal lobe areas. We observed involvement or more prominent activation of the posterior-lateral temporal regions in GTCS prior to propagation to the other cortical regions, versus FS, which had no involvement or less prominent activation of the posterior lateral temporal cortex. Occipital contacts were not involved at the time of clinical secondary generalization. SIGNIFICANCE: The posterior-lateral temporal cortex may serve as an important "gateway" controlling propagation of medial temporal lobe seizures to other cortical regions. Identifying the mechanisms of secondary generalization of focal seizures could lead to improved treatments to confine seizure spread.


Assuntos
Eletroencefalografia/métodos , Epilepsia Generalizada/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/fisiopatologia , Adulto , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/diagnóstico , Epilepsia do Lobo Temporal/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/diagnóstico , Gravação em Vídeo/métodos , Adulto Jovem
16.
Clin Neurophysiol ; 150: 98-105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060844

RESUMO

OBJECTIVE: To determine whether quantitative EEG analysis of burst suppression can predict seizure recurrence in patients with refractory status epilepticus (RSE) being treated with anesthetic doses of continuous IV antiseizure medications (cIVASM). METHODS: Quantitative assessment of burst suppression (including epileptiform discharges [EDs] and evolution) in 31 occasions (from 27 patients), and correlation with seizure recurrence up to 48 hours post sedative wean. RESULTS: Occasions resulting in seizure recurrence (vs. no seizure recurrence) had lower burst (8.4 vs. 10.6 µV) and interburst interval (IBI) (4.2 vs. 4.8 µV) average amplitude, duration (bursts 2.8 vs. 3.6 s: IBIs 3.6 vs. 4.4 s); and burst total power (0.4 vs. 0.7 µV2). Bursts (0.86 vs. 0.60) and IBIs (0.28 vs. 0.07) with EDs, higher number of EDs within bursts (mean 2.1 vs. 1.4) and IBIs (0.6 vs. 0.2), and positive evolution measures all predicted seizure recurrence, although EDs had the greatest adjusted odds ratio on multivariate analysis. CONCLUSIONS: For patients in burst suppression, successful wean of cIVASM was not determined by classical burst suppression measures, but instead how "epileptiform" bursts and IBIs were, as determined by EDs in both bursts and IBIs and surrogates for evolution within bursts. SIGNIFICANCE: If confirmed, these objective measures could be used during clinical care to help determine when to wean cIVASM in patients with RSE.


Assuntos
Eletroencefalografia , Estado Epiléptico , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Hipnóticos e Sedativos
17.
JAMA Neurol ; 80(11): 1155-1165, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721736

RESUMO

Importance: Published data about the impact of poststroke seizures (PSSs) on the outcomes of patients with stroke are inconsistent and have not been systematically evaluated, to the authors' knowledge. Objective: To investigate outcomes in people with PSS compared with people without PSS. Data Sources: MEDLINE, Embase, PsycInfo, Cochrane, LILACS, LIPECS, and Web of Science, with years searched from 1951 to January 30, 2023. Study Selection: Observational studies that reported PSS outcomes. Data Extraction and Synthesis: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was used for abstracting data, and the Joanna Briggs Institute tool was used for risk-of-bias assessment. Data were reported as odds ratio (OR) and standardized mean difference (SMD) with a 95% CI using a random-effects meta-analysis. Publication bias was assessed using funnel plots and the Egger test. Outlier and meta-regression analyses were performed to explore the source of heterogeneity. Data were analyzed from November 2022 to January 2023. Main Outcomes and Measures: Measured outcomes were mortality, poor functional outcome (modified Rankin scale [mRS] score 3-6), disability (mean mRS score), recurrent stroke, and dementia at patient follow-up. Results: The search yielded 71 eligible articles, including 20 110 patients with PSS and 1 166 085 patients without PSS. Of the participants with PSS, 1967 (9.8%) had early seizures, and 10 605 (52.7%) had late seizures. The risk of bias was high in 5 studies (7.0%), moderate in 35 (49.3%), and low in 31 (43.7%). PSSs were associated with mortality risk (OR, 2.1; 95% CI, 1.8-2.4), poor functional outcome (OR, 2.2; 95% CI, 1.8-2.8), greater disability (SMD, 0.6; 95% CI, 0.4-0.7), and increased dementia risk (OR, 3.1; 95% CI, 1.3-7.7) compared with patients without PSS. In subgroup analyses, early seizures but not late seizures were associated with mortality (OR, 2.4; 95% CI, 1.9-2.9 vs OR, 1.2; 95% CI, 0.8-2.0) and both ischemic and hemorrhagic stroke subtypes were associated with mortality (OR, 2.2; 95% CI, 1.8-2.7 vs OR, 1.4; 95% CI, 1.0-1.8). In addition, early and late seizures (OR, 2.4; 95% CI, 1.6-3.4 vs OR, 2.7; 95% CI, 1.8-4.1) and stroke subtypes were associated with poor outcomes (OR, 2.6; 95% CI, 1.9-3.7 vs OR, 1.9; 95% CI, 1.0-3.6). Conclusions and Relevance: Results of this systematic review and meta-analysis suggest that PSSs were associated with significantly increased mortality and severe disability in patients with history of stroke. Unraveling these associations is a high clinical and research priority. Trials of interventions to prevent seizures may be warranted.


Assuntos
Demência , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Convulsões/etiologia , Avaliação de Resultados em Cuidados de Saúde
18.
Neurobiol Dis ; 45(1): 165-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21856423

RESUMO

Monocarboxylate transporter 1 (MCT1) facilitates the transport of monocarboxylate fuels (lactate, pyruvate and ketone bodies) and acidic drugs, such as valproic acid, across cell membranes. We recently reported that MCT1 is deficient on microvessels in the epileptogenic hippocampal formation in patients with medication-refractory temporal lobe epilepsy (TLE). To further define the role of MCT1 in the pathophysiology of TLE, we used immunohistochemistry and stereological analysis to localize and quantify the transporter in the hippocampal formation in three novel and highly relevant rat models of TLE and in nonepileptic control animals. One model utilizes methionine sulfoximine to induce brain glutamine synthetase deficiency and recurrent limbic seizures, while two models employ an episode of perforant pathway stimulation to cause epilepsy. MCT1 was lost on microvessels and upregulated on astrocytes in the hippocampal formation in all models of TLE. Notably, the loss of MCT1 on microvessels was not due to a reduction in microvessel density. The similarities in MCT1 expression among human subjects with TLE and several animal models of the disease strongly suggest a critical role of this molecule in the pathogenesis of TLE. We hypothesize that the downregulation of MCT1 may promote seizures via impaired uptake of ketone bodies and antiepileptic drugs by the epileptogenic brain. We also propose that the overexpression of MCT1 on astrocytes may lead to increased uptake or release of monocarboxylates by these cells, with important implications for brain metabolism and excitability. These hypotheses can now be rigorously tested in several animal models that replicate key features of human TLE.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/genética , Masculino , Microvasos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ratos , Ratos Sprague-Dawley , Simportadores/genética
19.
Neurobiol Dis ; 47(3): 331-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659305

RESUMO

Increased extracellular brain glutamate has been implicated in the pathophysiology of human refractory temporal lobe epilepsy (TLE), but the cause of the excessive glutamate is unknown. Prior studies by us and others have shown that the glutamate degrading enzyme glutamine synthetase (GS) is deficient in astrocytes in the epileptogenic hippocampal formation in a subset of patients with TLE. We have postulated that the loss of GS in TLE leads to increased glutamate in astrocytes with elevated concentrations of extracellular glutamate and recurrent seizures as the ultimate end-points. Here we test the hypothesis that the deficiency in GS leads to increased glutamate in astrocytes. Rats were chronically infused with methionine sulfoximine (MSO, n=4) into the hippocampal formation to induce GS deficiency and recurrent seizures. A separate group of rats was infused with 0.9% NaCl (saline) as a control (n=6). At least 10days after the start of infusion, once recurrent seizures were established in the MSO-treated rats, the concentration of glutamate was assessed in CA1 of the hippocampal formation by immunogold electron microscopy. The concentration of glutamate was 47% higher in astrocytes in the MSO-treated vs. saline-treated rats (p=0.02), and the ratio of glutamate in astrocytes relative to axon terminals was increased by 74% in the MSO-treated rats (p=0.003). These data support our hypothesis that a deficiency in GS leads to increased glutamate in astrocytes. We additionally propose that the GS-deficient astrocytes in the hippocampal formation in TLE lead to elevated extracellular brain glutamate either through decreased clearance of extracellular glutamate or excessive release of glutamate into the extracellular space from these cells, or a combination of the two.


Assuntos
Astrócitos/metabolismo , Epilepsia do Lobo Temporal/patologia , Ácido Glutâmico/metabolismo , Animais , Astrócitos/ultraestrutura , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Eletroencefalografia , Epilepsia do Lobo Temporal/etiologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Masculino , Metionina Sulfoximina/toxicidade , Microscopia Imunoeletrônica , Ratos , Ratos Sprague-Dawley
20.
Brain Commun ; 4(3): fcac114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611311

RESUMO

This scientific commentary refers to 'Network connectivity predicts effectiveness of responsive neurostimulation in focal epilepsy', by Fan et al. (https://doi.org/10.1093/braincomms/fcac104).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA