Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
BMC Plant Biol ; 24(1): 503, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840061

RESUMO

BACKGROUND: Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS: In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of ß-1,3-glucanase, endo-ß-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS: The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.


Assuntos
Parede Celular , Frutas , Oxigênio , Pectinas , Proteínas de Plantas , Solanum lycopersicum , Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Pectinas/metabolismo , Mucoproteínas/metabolismo
2.
BMC Plant Biol ; 23(1): 45, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670377

RESUMO

The aim of this report is to provide general information on the molecular structure and synthesis of arabinogalactan proteins (AGPs) in association to their physiological significance. Assessment of genetic modifications of the activity of enzymes involved in the AGP biosynthesis is an efficient tool to study AGP functions. Thus, P4H (prolyl 4 hydroxylase) mutants, GLCAT (ß-glucuronosyltransferase) mutants, and GH43 (glycoside hydrolase family 43) mutants have been described. We focused on the overview of AGPs modifications observed at the molecular, cellular, and organ levels. Inhibition of the hydroxylation process results in an increase in the intensity of cell divisions and thus, has an impact on root system length and leaf area. In turn, overexpression of P4H genes stimulates the density of root hairs. A mutation in GLCAT genes responsible for the transfer of glucuronic acid to the AGP molecule revealed that the reduction of GlcA in AGP disrupts the substantial assembly of the primary cell wall. Furthermore, silencing of genes encoding GH43, which has the ability to hydrolyze the AGP glycan by removing incorrectly synthesized ß-1,3-galactans, induces changes in the abundance of other cell wall constituents, which finally leads to root growth defects. This information provides insight into AGPs as a crucial players in the structural interactions present in the plant extracellular matrix.


Assuntos
Mucoproteínas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Galactanos/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834619

RESUMO

Opuntia joconostle is a semi-wild cactus cultivated for its fruit. However, the cladodes are often discarded, wasting the potentially useful mucilage in them. The mucilage is composed primarily of heteropolysaccharides, characterized by their molar mass distribution, monosaccharide composition, structural features (by vibrational spectroscopy, FT IR, and atomic force microscopy, AFM), and fermentability by known saccharolytic commensal members of the gut microbiota. After fractionation with ion exchange chromatography, four polysaccharides were found: one neutral (composed mainly of galactose, arabinose, and xylose) and three acidic, with a galacturonic acid content from 10 to 35%mol. Their average molar masses ranged from 1.8 × 105 to 2.8 × 105 g·mol-1. Distinct structural features such as galactan, arabinan, xylan, and galacturonan motifs were present in the FT IR spectra. The intra- and intermolecular interactions of the polysaccharides, and their effect on the aggregation behavior, were shown by AFM. The composition and structural features of these polysaccharides were reflected in their prebiotic potential. Lactobacilli and Bifidobacteria were not able to utilize them, whereas members of Bacteroidetes showed utilization capacity. The obtained data suggest a high economic potential for this Opuntia species, with potential uses such as animal feed in arid areas, precise prebiotic, and symbiotic formulations, or as the carbon skeleton source in a green refinery. Our methodology can be used to evaluate the saccharides as the phenotype of interest, helping to guide the breeding strategy.


Assuntos
Opuntia , Opuntia/química , Prebióticos , Melhoramento Vegetal , Polissacarídeos/química , Galactanos
4.
BMC Plant Biol ; 22(1): 600, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539686

RESUMO

BACKGROUND: Arabinogalactan proteins (AGPs) are extracellular matrix constituents involved in plant response to fungal infection. The aim of the current study was to investigate the antifungal effect of AGPs ex situ and to determine the structural features of AGPs that may have an influence on this activity. The features of AGPs isolated from fruit were investigated with molecular tools based on specific monoclonal antibodies recognizing carbohydrate AGP epitopes. The Antifungal (well-diffusion) Susceptibility Test and the Agar Invasion Test were used to assess the impact of AGPs on Penicillium notatum culture. RESULTS: The results definitely ruled out the influence of AGPs on fungal growth. The immunochemical analyses revealed that AGPs consist mainly of carbohydrate chains composed of ß-linked glucuronosyl residues recognized by LM2 and GlcA-ß(1 → 3)-GalA-α(1 → 2) Rha recognized by JIM13, which do not have the same functional properties outside the plant cell in in vitro experimental conditions. CONCLUSIONS: The action of a single cell wall component does not elicit any influence ex situ. The extensive accumulation of glycan chains of AGPs in infected tissue as a result of a complex mechanism occurring in the cell wall emphasizes the importance of dependencies between particular components of the extracellular matrix in response to fungal attack.


Assuntos
Antifúngicos , Frutas , Frutas/metabolismo , Antifúngicos/metabolismo , Mucoproteínas/metabolismo , Carboidratos , Proteínas de Plantas/metabolismo
5.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630570

RESUMO

Although the health benefits of cornflower extracts are known, their application in food production has not been widely investigated. This study assessed microencapsulated red powders (RP) prepared from the aqueous extract of blue cornflower petals. Microencapsulation was performed by freeze-drying using various stabilizers, such as maltodextrin, guar gum, and lecithin. The microencapsulated RP were characterized by spectral (FT-IR and FT-Raman), mineral, structural, and antioxidant analyses. The FT-IR and FT-Raman band related to guar gum, lecithin, and maltodextrin dominated over the band characteristic of anthocyanins present in the cornflower petal powders. The main difference observed in the FT-Raman spectra was attributed to a shift of bands which is reflection of appearance of flavium cation forms of anthocyanins. The microencapsulated RP had total phenolic content of 21.6-23.4 mg GAE/g DW and total flavonoid content of 5.0-5.23 mg QE/g. The ABTS radical scavenging activity of the tested powders ranged from 13.8 to 20.2 EC50 mg DW/mL. The reducing antioxidant power (RED) of the powders was estimated at between 31.0 and 38.7 EC50 mg DW/mL, and OH• scavenging activity ranged from 1.9 to 2.6 EC50 mg DW/mL. Microencapsulated cornflower RP can be valuable additives to food such as sweets, jellies, puddings, drinks, or dietary supplements.


Assuntos
Antocianinas , Antioxidantes , Antocianinas/química , Antioxidantes/química , Lecitinas , Pós , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056815

RESUMO

The storage of plant samples as well as sample preparation for extraction have a significant impact on the profile of metabolites, however, these factors are often overlooked during experiments on vegetables or fruit. It was hypothesized that parameters such as sample storage (freezing) and sample pre-treatment methods, including the comminution technique or applied enzyme inhibition methods, could significantly influence the extracted volatile metabolome. Significant changes were observed in the volatile profile of broccoli florets frozen in liquid nitrogen at -20 °C. Those differences were mostly related to the concentration of nitriles and aldehydes. Confocal microscopy indicated some tissue deterioration in the case of slow freezing (-20 °C), whereas the structure of tissue, frozen in liquid nitrogen, was practically intact. Myrosinase activity assay proved that the enzyme remains active after freezing. No pH deviation was noted after sample storage - this parameter did not influence the activity of enzymes. Tissue fragmentation and enzyme-inhibition techniques applied prior to the extraction influenced both the qualitative and quantitative composition of the volatile metabolome of broccoli.


Assuntos
Brassica/metabolismo , Flores/metabolismo , Manipulação de Alimentos/métodos , Congelamento , Glicosídeo Hidrolases/metabolismo , Metaboloma , Compostos Orgânicos Voláteis/química , Brassica/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Armazenamento de Alimentos , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
7.
Molecules ; 27(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363977

RESUMO

In the present study, the potential of lead and cadmium removal by the extracellular polymeric substances (EPS) produced from Parachlorella kessleri and Chlorella vulgaris were investigated. Carbohydrates were the dominant components of EPS from both analyzed species. The contents of reducing sugars, uronic acids, and amino acids were higher in EPS synthesized by C. vulgaris than in EPS from P. kessleri. The analysis of the monosaccharide composition showed the presence of rhamnose, mannose and galactose in the EPS obtained from both species. The ICP-OES (inductively coupled plasma optical emission spectrometry) analyses demonstrated that C. vulgaris EPS showed higher sorption capacity in comparison to P. kessleri EPS. The sorption capacity of C. vulgaris EPS increased with the increase in the amount of metal ions. P. kessleri EPS had a maximum sorption capacity in the presence of 100 mg/L of metal ions. The FTIR analysis demonstrated that the carboxyl, hydroxyl, and carbonyl groups of EPS play a key role in the interactions with metal ions. The present study showed C. vulgaris EPS can be used as a biosorbent in bioremediation processes due to its biochemical composition, the presence of significant amounts of negatively charged uronic acids, and higher sorption capacity.


Assuntos
Chlorella vulgaris , Matriz Extracelular de Substâncias Poliméricas , Matriz Extracelular de Substâncias Poliméricas/química , Cádmio/química , Chlorella vulgaris/metabolismo , Metais/análise , Íons/análise , Ácidos Urônicos/metabolismo
8.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565974

RESUMO

The goal of this work is to evaluate the hop stems, a byproduct of hop cones production, as a potential source of cellulose. Hop stems contain up to 29% of cellulose. The cellulose isolation was conducted through the thermochemical treatment. After high-speed blending, the cellulose was characterized by 67% of crystallinity degree obtained from X-ray diffraction and median diameter of 6.7 nm obtained from atomic force microscopy imaging. The high-intensity ultrasonication (HIUS) was applied to reach further disintegration of cellulose fibers. The longer HIUS treatment resulted in decrease in crystallinity degree even up to 60% and decrease in the fiber diameter up to 4 nm. The Fourier transform infrared spectroscopy (FTIR) spectra showed that HIUS treatment led to changes in intermolecular hydrogen bonds. The stability of cellulose dispersions versus length of HIUS treatment was monitored over 14 days with back dynamic light scattering and laser Doppler electrophoresis methods. Obtained results are evidence that the hop stems are a potential source of cellulose and that it is possible to obtain stable dispersions after HIUS treatment. This was the first time that the properties of hop cellulose have been described so extensively and in detail after the use of HIUS treatment.


Assuntos
Celulose , Celulose/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
J Sci Food Agric ; 102(13): 5965-5973, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35445406

RESUMO

BACKGROUND: Okra pods contain heat-sensitive substances, such as phenolic compounds and other phytochemicals that can be degraded when okra pods are subjected to heat treatment. The understanding of the impact of high humidity hot air impingement blanching (HHAIB) on the changes in physicochemical properties of polysaccharides and phytochemicals of okra pods is of great importance because over-blanching may result in cell membrane disruption and changes in biologically active compounds under prolonged exposure to the thermal treatment. Therefore, the present study aimed to investigate the effect of HHAIB on the changes in physicochemical properties of pectins and phytochemicals extracted from okra pods. RESULTS: Both the HHAIB time and method of extraction influenced their physicochemical characteristics and biological activity. Pectin fractions subjected to HHAIB were composed of polygalacturonic acid, rhamnogalacturonan, glucomannan, galactan, mannose, arabinose, rhamnose, calcium pectate and arabinogalactan. The contents of total phenolics, total flavonoids and antioxidant activity of extracts mostly increased during HHAIB (i.e. up to 19.0%, 13.2% and 35.3%, respectively). However, HHAIB reduced the chlorophyll-a (up to 55.7%) and lycopene (up to 52.6%) contents of okra pods. CONCLUSION: The acquired knowledge may be useful for better understanding and optimization of technologies based on HHAIB treatment. The HHAIB treated okra can be a promising natural alternative in different applications, including its use as a replacement of some ingredients in food or non-food systems as a result of richness in polysaccharides and polyphenols, as well as high antioxidant properties. © 2022 Society of Chemical Industry.


Assuntos
Abelmoschus , Abelmoschus/química , Antioxidantes/química , Parede Celular/metabolismo , Temperatura Alta , Umidade , Compostos Fitoquímicos/análise , Polissacarídeos/química
10.
Compr Rev Food Sci Food Saf ; 20(1): 1101-1117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331080

RESUMO

Pectin is a heteropolysaccharide abundant in the cell wall of plants and is obtained mainly from fruit (citrus and apple), thus its properties are particularly prone to changes occurring during ripening process. Properties of pectin depend on the string-like structure (conformation, stiffness) of the molecules that determines their mutual interaction and with the surrounding environment. Therefore, in this review the primary, secondary, and structures of higher levels of pectin chains are discussed in relation to external factors including crosslinking mechanisms. The review shows that the primary structure of pectin is relatively well known, however, we still know little about the conformation and properties of the more realistic systems of higher orders involving side chains, functional groups, and complexes of pectin domains. In particular, there is lack of knowledge on the influence of postharvest changes and extraction method on the primary and secondary structure of pectin that would affect conformation in a given environment and assembly to higher structural levels. Exploring the above-mentioned issues will allow to improve our understanding of pectin functionality and will help to tailor new functionalities for the food industry based on natural but often biologically variable source. The review also demonstrates that atomic force microscopy is a very convenient and adequate tool for the evaluation of pectin conformation since it allows for the relatively straightforward stretching of the pectin molecule in order to measure the force-extension curve which is directly related to its stiffness or flexibility.


Assuntos
Citrus , Malus , Frutas , Pectinas , Polissacarídeos
11.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517129

RESUMO

The enzyme driven changes in plant cell wall structure during fruit ripening result in debranching, depolymerization and solubilization of pectin polysaccharides, which has an effect in terms of the postharvest quality losses in fruit. Atomic force microscopy (AFM) has revealed that diluted alkali soluble pectins (DASP) from fruit and vegetables have an interesting tendency to self-assemble into regular structures. However, the mechanism is not yet fully understood. The current study is aimed at investigating the role of neutral sugars, namely galactose, rhamnose and arabinose in the formation of the branched structure of DASP. ß-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase enzymes were used for the treatment of DASP extracted from Golden Delicious apple flesh (Malus domestica cv. Golden Delicious). The effects of the selective degradation of pectic polysaccharides after 15, 30, 60, 90 and 120 min of incubation were observed using AFM. The α-L-rhamnosidase enzyme activity on pectin extracted with Na2CO3 did not cause any visible or measurable degradation of the molecular structure. The moderate effects of ß-galactosidase enzymatic treatment suggested the possible role of galactose in the branching of DASP molecules deposited on mica. Data obtained for α-L-arabinofuranosidase indicated the crucial role of arabinose in the formation and preservation of the highly branched structure of the DASP fraction.


Assuntos
Frutas/química , Glicosídeo Hidrolases/química , Malus/química , Pectinas/química , Extratos Vegetais/química , beta-Galactosidase/química , Carbonatos/química , Hidrólise , Microscopia de Força Atômica
12.
Molecules ; 25(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967223

RESUMO

The high quality and long shelf life of strawberry fruit are largely dependent on the cultivation method. The goal of this experiment was to study the effect of different cultivation methods on molecular structure and rheological properties of pectin extracted from strawberry quality parameters during cold storage. Three methods of cultivation of strawberry cv. Honeoye were tested: organic cultivation on raised beds, organic cultivation with the flat-planted method and conventional cultivation with the flat-planted method. The nanostructure of pectin (AFM), its chemical structure (FT-IR) and rheological properties were studied. The fruits were also tested by size, dry matter, firmness, acidity and the content of soluble solids, anthocyanin, phenolics, vitamin C and galacturonic acid. Pectin isolated from organic strawberries was more rapidly degraded than conventional strawberry pectin, which limits the possibilities for their processing and use as gelling or stabilizing agents at 20 °C. The differences in fruit quality were particularly noticeable with respect to the anthocyanin content, which was significantly higher for organic strawberry. The organic fruit also had better sensory properties because of its lower acidity and higher soluble solid content (SSC). These and other results from this experiment showed that strawberries produced by organic farming methods had better biochemical properties compared to conventional fruit; however, pectin transformation undergone faster limits their further technological applications.


Assuntos
Temperatura Baixa , Armazenamento de Alimentos , Fragaria/química , Fragaria/crescimento & desenvolvimento , Pectinas/química , Qualidade dos Alimentos , Fenômenos Mecânicos
13.
Ann Bot ; 123(1): 47-55, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007326

RESUMO

Background and Aims: Changes in the arrangement of cell wall components determine cell wall properties (integrity, stiffness), thereby affecting the macro-scale properties of fruits, which are important for consumers and industry. Arabinogalactan proteins (AGPs) are ubiquitous components of the plant cell, in which they have various functions. Currently, AGPs are considered to be one of the less well-known, enigmatic proteoglycans, a consequence of their heterogeneous structure and unclear mechanism of activity. Methods: An immunocytochemical study was conducted to elucidate the distribution of AGPs and pectic polysaccharides contained in apple (Malus × domestica) fruit during senescence. De-esterified homogalacturonan (LM19), methyl-esterified homogalacturonan (LM20), processed arabinan (LM16) and three AGP epitopes (JIM13, JIM15, MAC207) were identified in the fruit at three stages: fresh fruit, and fruit at 1 and 3 months of post-harvest storage. Key Results: Microscopy revealed spatio-temporal changes in the localization of all examined epitopes. Changes of fruit cell wall assembly and its degradation were confirmed by determination of the galacturonic acid content in the WSP (water soluble pectins), CSP (chelator soluble pectins) and DASP (dilute alkali soluble pectins) fractions. Conclusions: The results revealed dependencies between AGPs, arabinan and homogalacturonan distribution in apple fruit, which are correlated with changes in microstructure during senescence. We propose that AGPs are involved in establishment of the cell wall - plasma membrane continuum.


Assuntos
Armazenamento de Alimentos , Galactanos/metabolismo , Malus/crescimento & desenvolvimento , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Malus/metabolismo
14.
Molecules ; 24(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027264

RESUMO

The cross-linking and gelation of low-methoxy pectins are basic processes commonly used in different industries. The aim of this research was to evaluate the cross-linking process of the sodium carbonate-soluble pectins (named DASP) extracted from apples, characterized by a low degree of methylesterification as a function of its concentration in water (CDASP). The cross-linking process was studied with a dynamic light scattering method, atomic force microscope (AFM), viscosity and pH measurements. An increase in CDASP above 0.01% resulted in a decrease in the aggregation index (AI) and the change of its sign from positive to negative. The value of AI = 0 occurred at CDASP = 0.33 ± 0.04% and indicated the formation of a pectin network. An increase in CDASP caused the changes in viscosity of pectin solutions and the nanostructure of pectins spin-coated on mica observed with AFM, which confirmed results obtained. The hydrogen bonds were involved in the cross-linking process.


Assuntos
Carbonatos/química , Malus/química , Pectinas/química , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Nanoestruturas/química , Viscosidade
15.
Sensors (Basel) ; 18(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617343

RESUMO

The dynamic laser speckle (biospeckle) method was tested as a potential tool for the assessment and monitoring of the maturity stage of tomatoes. Two tomato cultivars—Admiro and Starbuck—were tested. The process of climacteric maturation of tomatoes was monitored during a shelf life storage experiment. The biospeckle phenomena were captured using 640 nm and 830 nm laser light wavelength, and analysed using two activity descriptors based on biospeckle pattern decorrelation—C4 and ε. The well-established optical parameters of tomatoes skin were used as a reference method (luminosity, a*/b*, chroma). Both methods were tested with respect to their prediction capabilities of the maturity and destructive indicators of tomatoes—firmness, chlorophyll and carotenoids content. The statistical significance of the tested relationships were investigated by means of linear regression models. The climacteric maturation of tomato fruit was associated with an increase in biospckle activity. Compared to the 830 nm laser wavelength the biospeckle activity measured at 640 nm enabled more accurate predictions of firmness, chlorophyll and carotenoids content. At 640 nm laser wavelength both activity descriptors (C4 and ε) provided similar results, while at 830 nm the ε showed slightly better performance. The linear regression models showed that biospeckle activity descriptors had a higher correlation with chlorophyll and carotenoids content than the a*/b* ratio and luminosity. The results for chroma were comparable with the results for both biospeckle activity indicators. The biospeckle method showed very good results in terms of maturation monitoring and the prediction of the maturity indices of tomatoes, proving the possibility of practical implementation of this method for the determination of the maturity stage of tomatoes.


Assuntos
Solanum lycopersicum , Carotenoides , Lasers , Luz
16.
Soft Matter ; 13(40): 7318-7331, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28951923

RESUMO

A hybrid model based on a mass-spring system methodology coupled with the discrete element method (DEM) was implemented to simulate the deformation of cellular structures in 3D. Models of individual cells were constructed using the particles which cover the surfaces of cell walls and are interconnected in a triangle mesh network by viscoelastic springs. The spatial arrangement of the cells required to construct a virtual tissue was obtained using Poisson-disc sampling and Voronoi tessellation in 3D space. Three structural features were included in the model: viscoelastic material of cell walls, linearly elastic interior of the cells (simulating compressible liquid) and a gas phase in the intercellular spaces. The response of the models to an external load was demonstrated during quasi-static compression simulations. The sensitivity of the model was investigated at fixed compression parameters with variable tissue porosity, cell size and cell wall properties, such as thickness and Young's modulus, and a stiffness of the cell interior that simulated turgor pressure. The extent of the agreement between the simulation results and other models published is discussed. The model demonstrated the significant influence of tissue structure on micromechanical properties and allowed for the interpretation of the compression test results with respect to changes occurring in the structure of the virtual tissue. During compression virtual structures composed of smaller cells produced higher reaction forces and therefore they were stiffer than structures with large cells. The increase in the number of intercellular spaces (porosity) resulted in a decrease in reaction forces. The numerical model was capable of simulating the quasi-static compression experiment and reproducing the strain stiffening observed in experiment. Stress accumulation at the edges of the cell walls where three cells meet suggests that cell-to-cell debonding and crack propagation through the contact edge of neighboring cells is one of the most prevalent ways for tissue to rupture.


Assuntos
Força Compressiva , Modelos Biológicos , Células Vegetais/metabolismo , Fenômenos Biomecânicos
17.
Planta ; 243(2): 519-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498014

RESUMO

MAIN CONCLUSION: The Young's modulus of the primary cell walls of pears decreases linearly during the pre-harvest on-tree maturation and increases during postharvest storage, and does not correlate with firmness of fruit. The determination of mechanical properties of cell walls is indispensable for understanding the mechanism of physiological softening and deterioration of quality of fruits during postharvest storage. The Young's modulus of the primary cell walls from pear fruit (Pyrus communis L., cultivars 'Conference' and 'Xenia') during pre-harvest maturation and postharvest storage in an ambient atmosphere at 2 °C followed by shelf life was studied using atomic force microscopy (AFM). The results were related to the firmness of fruits, galacturonic acid content in water, chelator, sodium carbonate and insoluble pectin fractions, polygalacturonase and pectin methylesterase activities. The Young's modulus of the primary cell walls decreased linearly during the last month of pre-harvest maturation from 3.2 ± 1.8 to 1.1 ± 0.7 MPa for 'Conference' and from 1.9 ± 1.2 to 0.2 ± 0.1 MPa for 'Xenia' which correlated with linear firmness decrease. During postharvest storage the cell wall Young's modulus increased while firmness continued to decrease. Correlation analysis for the entire period of the experiment showed a lack of straightforward relation between the Young's modulus of primary cell walls and fruit firmness. The Young's modulus of cell walls correlated negatively either with galacturonic acid content in sodium carbonate soluble pectin ('Conference') or with insoluble pectin fractions ('Xenia') and positively with polygalacturonase activity. It was therefore evidenced that covalently linked pectins play the key role for the stiffness of fruit cell walls. Based on the obtained results, the model explaining the fruit transition from firm and crispy to soft and mealy was proposed.


Assuntos
Parede Celular/fisiologia , Pyrus/citologia , Fenômenos Biomecânicos , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/ultraestrutura , Frutas/citologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ácidos Hexurônicos/metabolismo , Microscopia de Força Atômica , Pectinas/metabolismo , Poligalacturonase/metabolismo , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo
18.
Planta ; 243(4): 935-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26733465

RESUMO

MAIN CONCLUSION: Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to evenly dispersed along the cell wall. The plant cell wall influences the texture properties of fruit tissue for example apples become softer during ripening and postharvest storage. This softening process is believed to be mainly connected with changes in the cell wall composition due to polysaccharides undergoing an enzymatic degradation. These changes in polysaccharides are currently mainly investigated via chemical analysis or monoclonal labeling. Here, we propose the application of Raman microscopy for evaluating the changes in the polysaccharide distribution in the cell wall of apples during both ripening and postharvest storage. The apples were harvested 1 month and 2 weeks before optimal harvest date as well as at the optimal harvest date. The apples harvested at optimal harvest date were stored for 3 months. The Raman maps, as well as the chemical analysis were obtained for each harvest date and after 1, 2 and 3 months of storage, respectively. The analysis of the Raman maps showed that the pectins in the middle lamella and primary cell wall undergo a degradation. The changes in cellulose and hemicellulose were less pronounced. These findings were confirmed by the chemical analysis results. During development changes of pectins from a polydispersed form in the cell walls to a cumulated form in cell wall corners could be observed. In contrast after 3 months of apple storage we could observe an substantial pectin decrease. The obtained results demonstrate that Raman chemical imaging might be a very useful tool for a first identification of compositional changes in plant tissue during their development. The great advantage Raman microspectroscopy offers is the simultaneous localization and identification of polysaccharides within the cell wall and plant tissue.


Assuntos
Parede Celular/química , Frutas/fisiologia , Malus/fisiologia , Polissacarídeos/análise , Análise Espectral Raman/métodos , Parede Celular/metabolismo , Celulose/análise , Análise por Conglomerados , Frutas/química , Frutas/citologia , Processamento de Imagem Assistida por Computador , Malus/química , Malus/citologia , Pectinas/análise , Pectinas/metabolismo , Polissacarídeos/metabolismo
19.
Sensors (Basel) ; 16(5)2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27171093

RESUMO

Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre-harvest development. Despite this, at the current state of development the BA method cannot be used as an indicator alone. Due to rather poor results for prediction in OHW the BA measurements should be supported by other destructive methods to compensate its low selectivity.


Assuntos
Agricultura , Técnicas Biossensoriais , Frutas , Malus
20.
Physiol Plant ; 153(2): 307-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25211351

RESUMO

The physiological control and molecular mechanism of circumnutation (CN) has not yet been fully understood. To gain information on the CN mechanism, the relationship between the changes of electrical potential and movement in the circumnutating sunflower stem and effect of ion channels and proton pump inhibitors on CN parameters were evaluated. Long-term electrophysiological measurements and injection of solutions of ion channel inhibitors (ICI) into sunflower stem with the simultaneous time-lapse recording of the movement were made. The oscillations of electrical potential (OEP) - movement relations - consist of cells depolarization on the deflected side of the stem and, at this same time, cells hyperpolarization on the opposite side of the stem. The delay of organ movement in relation to electrical changes of approximately 28 min (22% of the period) may indicate that the ionic fluxes causing the OEP are the primary phenomenon. The biggest decrease of CN period was observed after injection of proton pump (approximately 26%) and cation channel (approximately 25%) inhibitors, while length and amplitude were reduced mainly by calcium channel inhibitors (approximately 67%). Existence of OEP only in circumnutating part of sunflower stem and reduction of CN parameters and OEP amplitude after application of ICI prove that the CN cellular mechanism is associated with transmembrane ion transport.


Assuntos
Potenciais de Ação/fisiologia , Helianthus/fisiologia , Canais Iônicos/metabolismo , Caules de Planta/fisiologia , Inibidores da Bomba de Prótons/metabolismo , Potenciais de Ação/efeitos dos fármacos , Eletrodos , Análise de Fourier , Helianthus/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Movimento , Caules de Planta/efeitos dos fármacos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA