Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Magn Reson Chem ; 61(7): 443-447, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960574

RESUMO

A new amide tricholomine C was isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Its structure was identified by a combination of nuclear magnetic resonance spectroscopic analysis and electronic circular dichroism (ECD) calculations. The ethyl alcohol crude extract and tricholomines A-C from T. bakamatsutake were evaluated for neuroprotective activities. Of these substances, the crude extract showed weak neurite outgrowth-promoting activity in rat pheochromocytoma (PC12) cells, as well as weak inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Ratos , Animais , Butirilcolinesterase/análise , Acetilcolinesterase/análise , Amidas/farmacologia , Amidas/análise , Carpóforos/química , Misturas Complexas/análise
2.
Magn Reson Chem ; 59(5): 587-593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173887

RESUMO

Two new amides tricholomines A (1) and B (2), along with nine known compounds, were isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Their structures were determined on the basis of extensive spectroscopic analysis or comparison with the data in the literatures. The absolute configuration of 1 was confirmed by single crystal X-ray diffraction analysis.


Assuntos
Agaricales/química , Amidas/isolamento & purificação , Carpóforos/química , Amidas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
3.
Inorg Chem ; 59(13): 8827-8835, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32623890

RESUMO

Continuous and rapid synthesis of UiO-67 under mild conditions has been achieved by electrochemical methods for the first time. In the reaction system, a zirconium sheet was utilized as electrodes and a metal source for the assembly of UiO-67. High-crystalline UiO-67 with a regular tetrahedral morphology of around 1 µm was obtained within 1.5 h under the optimized solvent composition, voltage, and temperature conditions. This electrochemical synthetic method of UiO-67 in our work overcomes the shortcomings of high temperature and pressure of a traditional solvothermal method, which proposes new ideas for the large-scale and rapid synthesis of UiO-67. The UiO-67 synthesized by an electrochemical method was prepared as a UiO-67-carbon paste electrode (CPE), which exhibited a linear response to hydroquinone (HQ) in the range of 5-300 µM with a detection limit of 3.6 × 10-9 M (S/N = 3), for the electrochemical detection of HQ. It was confirmed that UiO-67-CPE possessed excellent reusability and antiinterference ability for the detection of HQ, and its detection ability even did not change after standing for 3 months. We further tried to apply UiO-67-CPE to the practical determination of HQ in tap water and river water samples, and the results proved that the recovery rate is 97.9-104.7% in real samples.

4.
Inorg Chem ; 58(10): 6742-6747, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31026150

RESUMO

Rapid and low-cost synthesis of metal-organic frameworks (MOFs) are very meaningful for their future practical application. In the present study, a Zr-based ultrastable MOF, UiO-66-NH2, was successfully synthesized by electrochemical method using metal Zr as the metal source at room temperature and atmospheric pressure. The effects of the reaction conditions, including the ratio of solvent (electrolyte), the applied voltage and different reaction time, on the crystallinity, morphology, and synthesis rate of the product were fully investigated. The results confirm that electrochemically synthesized UiO-66-NH2 under the optimized condition possesses apparent merits such as high crystallinity, uniform morphology and high porosity. Moreover, the electrochemical synthesis method of UiO-66-NH2 is promising for the large-scale and economical synthesis of nanoscale product to gramme degree. Interestingly, the resulting UiO-66-NH2 synthesized by this electrochemical method exhibits more excellent performance for the fluorescence detection of Fe3+ ions in water (detection limit of 10-8 mol/L) than that of the material prepared by solvothermal method.

5.
Chemistry ; 24(64): 17148-17154, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30125400

RESUMO

Nanoscale metal-organic frameworks (NMOFs) have proven to be a class of promising drug carriers as a result of their high porosity, crystalline nature with definite structure information, and potential for further functionality. However, MOF-based drug carriers with active tumor-targeting function have not been extensively researched until now. Here we show a strategy for constructing active tumor-targeted NMOF drug carriers by anchoring functional folic acid (FA) molecules onto the metal clusters of NMOFs. Two zirconium-based MOFs, MOF-808 and NH2 -UiO-66, were chosen as models to reduce to the nanoscale for application as drug carriers, and then the terminal carboxylates of FA molecules were coordinated to Zr6 clusters on the surfaces of the nanoparticles by substitution of the original formate or terminal -OH ligands. The successful modification with FA was confirmed by solid-state 13 C MAS NMR and UV/Vis spectroscopy and other characterization methods. Drug loading and controlled release behavior at different pH were determined by utilizing the anticancer drug 5-fluorouracil (5-FU) as the model drug. Confocal laser scanning microscopy measurements further demonstrated that 5-FU-loaded FA-NMOFs have excellent targeting ability through the efficient cellular uptake of FA-NMOFs. This work opens up a new avenue to the construction of active tumor-targeted NMOF-based drug carriers with potential for cancer therapies.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Zircônio/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Fluoruracila/química , Fluoruracila/farmacologia , Ácido Fólico/química , Células HeLa , Humanos , Camundongos , Microscopia Confocal
6.
Inorg Chem ; 57(7): 3818-3824, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528639

RESUMO

Rapid and large-scale synthesis of metal-organic frameworks (MOFs) materials is of great significance for their practical applications. For the first time, we have electrochemically synthesized IRMOF-3 at room temperature by applying a voltage to a zinc electrode immersed in electrolyte containing 2-aminoterephthalic acid (NH2-H2BDC). The reaction conditions, including the ratio of solvent (electrolyte), the applied voltage, and different reaction times, were investigated and optimized. The degree of crystallinity and nanomorphology of the synthesized IRMOF-3 can be controlled by changing the reaction conditions. More importantly, we demonstrated that the electrochemical synthesis strategy can rapidly obtain nanoscale IRMOF-3 with high crystallinity on a gram scale. In addition, in comparison with the product of solvothermal synthesis, the electrochemically synthesized nanoscale IRMOF-3 exhibits improved fluorescent detection ability to 2,4,6-trinitrophenol (TNP) with a detection limit of about 0.1 ppm.

7.
Angew Chem Int Ed Engl ; 57(37): 12106-12110, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30022581

RESUMO

Crystalline and porous covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long-range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two-dimensional (2D) COF with stable MOF. By covalently anchoring NH2 -UiO-66 onto the surface of TpPa-1-COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2 -UiO-66/TpPa-1-COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g-1 h-1 (with the TOF of 402.36 h-1 ), which is approximately 20 times higher than that of the parent TpPa-1-COF and the best performance photocatalyst for H2 evolution among various MOF- and COF-based photocatalysts.

8.
J Am Chem Soc ; 139(17): 6183-6189, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28388068

RESUMO

Imidazole molecules were frequently incorporated into porous materials to improve their proton conductivity. To investigate how different arrangements of imidazoles in metal-organic frameworks (MOFs) affect the overall proton conduction, we designed and prepared a MOF-based model system. It includes an Fe-MOF as the blank, an imidazole@Fe-MOF (Im@Fe-MOF) with physically adsorbed imidazole, and an imidazole-Fe-MOF (Im-Fe-MOF), which contains chemically coordinated imidazole molecules. The parent Fe-MOF, synthesized from the exchange of carboxylates in the preformed [Fe3(µ3-O)](carboxylate)6 clusters and multitopic carboxylate ligands, serves as a control. The Im@Fe-MOF was prepared by encapsulating free imidazole molecules into the pores of the Fe-MOF, whereas the Im-Fe-MOF was obtained in situ, in which imidazole ligands coordinate to the metal nodes of the framework. Proton-conductivity analyses revealed that the proton conductivity of Im-Fe-MOF was approximately two orders of magnitude greater than those of Fe-MOF and Im@Fe-MOF at room temperature. The high proton conductivity of 1.21 × 10-2 S cm-1 at 60 °C for Im-Fe-MOF ranks among the highest performing MOFs ever reported. The results of the density functional theory calculations suggest that coordinated imidazole molecules in Im-Fe-MOF provide a greater concentration of protons for proton transportation than do coordinated water molecules in Fe-MOF alone. Besides, Im-Fe-MOF exhibits steadier performance than Im@Fe-MOF does after being washed with water. Our investigation using the above ideal crystalline model system demonstrates that compared to disorderly arranged imidazole molecules in pores, the immobilized imidazole molecules by coordination bonds in the framework are more prone to form proton-conduction pathways and thus perform better and steadier in water-mediated proton conduction.

9.
Biochem Biophys Res Commun ; 487(4): 801-806, 2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28450109

RESUMO

T-type calcium channels are prominently expressed in primary nociceptive fibers and well characterized in pain processes. Although itch and pain share many similarities including primary sensory fibers, the function of T-type calcium channels on acute itch has not been explored. We investigated whether T-type calcium channels expressed within primary sensory fibers of mouse skin, especially Cav3.2 subtype, involve in chloroquine-, endothelin-1- and histamine-evoked acute itch using pharmacological, neuronal imaging and behavioral analyses. We found that pre-locally blocking three subtypes of T-type calcium channels in the peripheral afferents of skins, yielded an inhibition in acute itch or pain behaviors, while selectively blocking the Cav3.2 channel in the skin peripheral afferents only inhibited acute pain but not acute itch. These results suggest that T-type Cav3.1 or Cav3.3, but not Cav3.2 channel, have an important role in acute itch processing, and their distinctive roles in modulating acute itch are worthy of further investigation.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Neurônios Aferentes/metabolismo , Prurido/metabolismo , Pele/metabolismo , Animais , Masculino , Mibefradil/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Dalton Trans ; 53(6): 2534-2540, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38234156

RESUMO

Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.

11.
J Colloid Interface Sci ; 658: 571-583, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134666

RESUMO

Herein, using an electrophoretic deposition strategy, a S-scheme CdS (cubic)/BiVO4 (monoclinic) heterostructured photocatalyst is fabricated. The as-synthesized photocatalysts exhibit high carrier separation efficiency, prominent hydrogen evolution ability and high stability. The results of the detailed density functional theory (DFT) prove that the photogenerated electrons and holes are located in BiVO4 and CdS components, respectively. Besides, an explicit solvent model based on the electron-enriched region in CdS/BiVO4 heterojunction is designed deliberately to investigate the solid/liquid interface issues. Intriguing findings demonstrate that the surface hydrogen diffusing rate in CdS/BiVO4/H2O is faster than that of BiVO4/H2O and is highly associated with the electron-enrich effect, which has a greater capacity to promote water decomposition, the possibility of proton collision and photocatalytic hydrogen evolution. Notably, the H p orbital can participate in the electron-enrich effect during solvation, thus reforming the orbital energy level and activating the HER of the BiVO4 component in the CdS/BiVO4 system.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38038242

RESUMO

Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four ß-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.

13.
Nat Commun ; 14(1): 593, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737616

RESUMO

Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of ß-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 µmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.

14.
J Colloid Interface Sci ; 633: 233-242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36446216

RESUMO

The construction of tightly integrated heterostructures with metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) has been confirmed to be an effective way for improved hydrogen evolution. However, the reported tightly integrated MOF/COF hybrids were usually limited to the covalent connection of COFs with aldehyde groups and NH2-MOF via Schiff base reaction, restricting the development of MOF/COF hybrids. Herein, a covalent triazine framework (CTF-1), a subtype of crystalline COFs, was integrated with a conductive two-dimensional (2D) MOF (Ni-CAT-1) by a novel coordinating connection mode for significantly enhanced visible-light-driven hydrogen evolution. The terminal amidine groups in the CTF-1 layers offer dual N sites for the coordination of metal ions, which provides the potential of coordinating connection between CTF-1 and Ni-CAT-1. The conductive 2D Ni-CAT-1 in Ni-CAT-1/CTF-1 hybrids effectively facilitates the separation of photogenerated carriers of CTF-1 component, and the resultant hybrid materials show significantly enhanced photocatalytic hydrogen evolution activity. In particular, the Ni-CAT-1/CTF-1 (1:19) sample exhibits the maximum hydrogen evolution rate of 8.03 mmol g-1h-1, which is about four times higher than that of the parent CTF-1 (1.96 mmol g-1h-1). The enhanced photocatalytic activity of Ni-CAT-1/CTF-1 is mainly attributed to the incorporation of conductive MOF which leads to the formation of a Z-Scheme heterostructure, promoting the electron transfer in hybrid materials. The coordinating combination mode of Ni-CAT-1 and CTF-1 in this work provides a novel strategy for constructing tightly integrated MOF/COF hybrid materials.

15.
J Physiol Biochem ; 79(2): 313-325, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36696051

RESUMO

Signaling by the transforming growth factor (TGF)-ß superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-ß superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-ß superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-ß superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-ß superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.


Assuntos
Gânglios Espinais , Fator de Crescimento Transformador beta , Ratos , Animais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Dor , Grupos Diagnósticos Relacionados
16.
Chempluschem ; : e202300640, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37947764

RESUMO

Metal-organic frameworks (MOFs) have been widely studied as electrocatalysts, and the research strategy to improve their electrocatalytic oxygen evolution reaction (OER) performance is to modify their structure. In this paper, two-dimensional bimetallic MOFs were constructed to improve electrocatalytic OER performance. Using a mild electrochemical method with Ni and Co as metal sources and 4, 4 '-biphenyl dicarboxylic acid (H2 BPDC) as ligand, two-dimensional NiCo-BPDC was synthesized and then deposited on a carbon cloth electrode. The results show that NiCo-BPDC/CC possessed a low overpotential of 356 mV at a current density of 20 mA cm-2 with a small Tafel slope of 86 mV dec-1 in 1.0 M KOH solution. The two-dimensional NiCo-BPDC exhibits excellent electrocatalytic OER performance because the coordination of Ni and Co in the material and the interaction of the two-dimensional materials provide a large electrochemically active surface area and expose more metal active sites for OER, thus improving the reaction efficiency and indicating NiCo-BPDC as potential OER electrocatalyst.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36201267

RESUMO

BACKGROUND: Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-ß superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-ß superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE: We aimed to plot the transcriptional profiles of transforming growth factor-ß superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS: Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-ß superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin ßC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS: The expression of transforming growth factor-ß superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin ßC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION: This is the first report to investigate the transcriptional profiles of members of transforming growth factor-ß superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-ß superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.


Assuntos
Neuralgia , Fator de Crescimento Transformador beta , Ratos , Masculino , Animais , Axotomia , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/farmacologia , Ativinas/genética , Ativinas/farmacologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Neuralgia/genética , Neuralgia/patologia , RNA Mensageiro/genética , Inibinas/farmacologia , Fatores de Crescimento Transformadores/farmacologia
18.
Adv Mater ; 35(40): e2304170, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363880

RESUMO

Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.

19.
Mycology ; 13(3): 177-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938077

RESUMO

The production of a distinct profile of volatile organic compounds plays a crucial role in the ecology of hypogeous Ascomycetes, and is also key to their gastronomic relevance. In this study, we explored the aroma components of two rarely investigated Chinese desert truffles, namely Mattirolomyces terfezioides and Choiromyces cerebriformis, using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Our investigation revealed the significant presence of sulphur-containing volatiles in the aroma of M. terfezioides but not in C. cerebriformis. We discussed available information on the distribution of these interesting truffles in China and their use as choice food by local people.

20.
J Colloid Interface Sci ; 608(Pt 3): 2613-2622, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772502

RESUMO

Covalent organic frameworks (COFs) have been recognized as a new type of promising visible-light-driven photocatalysts for H2 evolution, while it still is a key point to facilitate the separation and transfer of photoinduced charges for further enhancing their activities. In this work, we fabricated a new type of ternary Pt/rGO/COF photocatalysts with Pt cocatalyst precisely anchored on rGO serving as electron collector for largely enhanced H2 evolution. A series of ternary hybrid materials were obtained via one-pot photoreduction of Pt4+ and GO under visible-light irradiation in a solution the same as photocatalytic H2 evolution reaction and simultaneous self-assembling of rGO/COF heterostructure. No need isolation, the synthetic system could be further used for photocatalytic H2 evolution reaction and the results show the H2 evolution rate of Pt/rGO(20%)/TpPa-1-COF hybrid material is 19.59 mmol·g-1·h-1, 6.51 times higher than that of Pt/TpPa-1-COF. The essential role of the exclusively distributed Pt nanoparticles on rGO to the high H2 evolution activity was confirmed by various comparisons of activity for the samples with diverse Pt distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA