Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7998): 313-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326591

RESUMO

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

2.
Proc Natl Acad Sci U S A ; 119(40): e2210203119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161916

RESUMO

Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolvation yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.

3.
Chem Soc Rev ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904425

RESUMO

Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.

4.
J Am Chem Soc ; 146(11): 7274-7287, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377953

RESUMO

The utilization of anionic redox chemistry provides an opportunity to further improve the energy density of Li-ion batteries, particularly for Li-rich layered oxides. However, oxygen-based hosts still suffer from unfavorable structural rearrangement, including the oxygen release and transition metal (TM)-ion migration, in association with the tenuous framework rooted in the ionicity of the TM-O bonding. An intrinsic solution, by using a sulfur-based host with strong TM-S covalency, is proposed here to buffer the lattice distortion upon the highly activating sulfur redox process, and it achieves howling success in stabilizing the host frameworks. Experimental results demonstrate the prolonged preservation of the layered sulfur lattice, especially the honeycomb superlattice, during the Li+ extraction/insertion process in contrast to the large structural degeneration in Li-rich oxides. Moreover, the Li-rich sulfide cathodes exhibited a negligible overpotential of 0.08 V and a voltage drop of 0.13 mV/cycle, while maintaining a substantial reversible capacity upon cycling. These superior electrochemical performances can be unambiguously ascribed to the much shorter trajectories of sulfur in comparison to those of oxygen revealed by molecular dynamics simulations at a large scale (∼30 nm) and a long time scale (∼300 ps) via high-dimensional neural network potentials during the delithiation process. Our findings highlight the importance of stabilizing host frameworks and establish general guidance for designing Li-rich cathodes with durable anionic redox chemistry.

5.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869216

RESUMO

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

6.
Angew Chem Int Ed Engl ; 63(11): e202318960, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38196292

RESUMO

Hard carbon (HC) as a potential candidate anode for sodium-ion batteries (SIBs) suffers from unstable solid electrolyte interphase (SEI) and low initial Coulombic efficiency (ICE), which limits its commercial applications and urgently requires the emergence of a new strategy. Herein, an organic molecule with two sodium ions, disodium phthalate (DP), was successfully engineered on the HC surface (DP-HC) to replenish the sodium loss from solid electrolyte interphase (SEI) formation. A stabilized and ultrathin (≈7.4 nm) SEI was constructed on the DP-HC surface, which proved to be simultaneously suitable in both ester and ether electrolytes. Compared to pure HC (60.8 %), the as-designed DP-HC exhibited a high ICE of >96.3 % in NaPF6 in diglyme (G2) electrolyte, and is capable of servicing consistently for >1600 cycles at 0.5 A g-1 . The Na3 V2 (PO4 )3 (NVP)|DP-HC full-cell with a 98.3 % exceptional ICE can be cycled stably for 450 cycles, demonstrating the tremendous practical application potential of DP-HC. This work provides a molecular design strategy to improve the ICE of HC, which will inspire more researchers to concentrate on the commercialization progress of HC.

7.
Angew Chem Int Ed Engl ; 63(18): e202401428, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38470429

RESUMO

Poly(vinylidene fluoride) (PVDF)-based polymer electro-lytes are attracting increasing attention for high-voltage solid-state lithium metal batteries because of their high room temperature ionic conductivity, adequate mechanical strength and good thermal stability. However, the presence of highly reactive residual solvents, such as N, N-dimethylformamide (DMF), severely jeopardizes the long-term cycling stability. Herein, we propose a solvation-tailoring strategy to confine residual solvent molecules by introducing low-cost 3 Šzeolite molecular sieves as fillers. The strong interaction between DMF and the molecular sieve weakens the ability of DMF to participate in the solvation of Li+, leading to more anions being involved in solvation. Benefiting from the tailored anion-rich coordination environment, the interfacial side reactions with the lithium anode and high-voltage NCM811 cathode are effectively suppressed. As a result, the solid-state Li||Li symmetrical cells demonstrates ultra-stable cycling over 5100 h at 0.1 mA cm-2, and the Li||NCM811 full cells achieve excellent cycling stability for more than 1130 and 250 cycles under the charging cut-off voltages of 4.3 V and 4.5 V, respectively. Our work is an innovative exploration to address the negative effects of residual DMF in PVDF-based solid-state electrolytes and highlights the importance of modulating the solvation structures in solid-state polymer electrolytes.

8.
Angew Chem Int Ed Engl ; 63(17): e202400868, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440859

RESUMO

Layered transition metal oxides are extensively considered as appealing cathode candidates for potassium-ion batteries (PIBs) due to their abundant raw materials and low cost, but their further implementations are limited by slow dynamics and impoverished structural stability. Herein, a layered composite having a P2 and P3 symbiotic structure is designed and synthesized to realize PIBs with large energy density and long-term cycling stability. The unique intergrowth of P2 and P3 phases in the obtained layered oxide is plainly characterized by X-ray diffraction refinement, high-angle annular dark field and annular bright field-scanning transmission electron microscopy at atomic resolution, and Fourier transformation images. The synergistic effect of the two phases of this layered P2/P3 composite is well demonstrated in K+ intercalation/extraction process. The as-prepared layered composite can present a large discharge capacity with the remarkable energy density of 321 Wh kg-1 and also manifest excellent capacity preservation after 600 cycles of K+ uptake/removal.

9.
Angew Chem Int Ed Engl ; 63(21): e202402833, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535776

RESUMO

Aqueous zinc-metal batteries (AZMBs) usually suffered from poor reversibility and limited lifespan because of serious water induced side-reactions, hydrogen evolution reactions (HER) and rampant zinc (Zn) dendrite growth. Reducing the content of water molecules within Zn-ion solvation sheaths can effectively suppress those inherent defects of AZMBs. In this work, we originally discovered that the two carbonyl groups of N-Acetyl-ϵ-caprolactam (N-ac) chelating ligand can serve as dual solvation sites to coordinate with Zn2+, thereby minimizing water molecules within Zn-ion solvation sheaths, and greatly inhibit water-induced side-reactions and HER. Moreover, the N-ac chelating additive can form a unique physical barrier interface on Zn surface, preventing the harmful contacting with water. In addition, the preferential adsorption of N-ac on Zn (002) facets can promote highly reversible and dendrite-free Zn2+ deposition. As a result, Zn//Cu half-cell within N-ac added electrolyte delivered ultra-high 99.89 % Coulombic efficiency during 8000 cycles. Zn//Zn symmetric cells also demonstrated unprecedented long life of more than 9800 hours (over one year). Aqueous Zn//ZnV6O16 ⋅ 8H2O (Zn//ZVO) full-cell preserved 78 % capacity even after ultra-long 2000 cycles. A more practical pouch-cell was also obtained (90.2 % capacity after 100 cycles). This method offers a promising strategy for accelerating the development of highly efficient AZMBs.

10.
Angew Chem Int Ed Engl ; : e202403617, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819860

RESUMO

All-solid-state lithium batteries (ASSBs) have received increasing attentions as one promising candidate for the next-generation energy storage devices. Among various solid electrolytes, sulfide-based ASSBs combined with layered oxide cathodes have emerged due to the high energy density and safety performance, even at high-voltage conditions. However, the interface compatibility issues remain to be solved at the interface between the oxide cathode and sulfide electrolyte. To circumvent this issue, we propose a simple but effective approach to magic the adverse surface alkali into a uniform oxyhalide coating on LiNi0.8Co0.1Mn0.1O2 (NCM811) via a controllable gas-solid reaction. Due to the enhancement of the close contact at interface, the ASSBs exhibit improved kinetic performance across a broad temperature range, especially at the freezing point. Besides, owing to the high-voltage tolerance of the protective layer, ASSBs demonstrate excellent cyclic stability under high cutoff voltages (500 cycles ~ 94.0% at 4.5 V, 200 cycles ~ 80.4% at 4.8 V). This work provides insights into using a high voltage stable oxyhalide coating strategy to enhance the development of high energy density ASSBs.

11.
Angew Chem Int Ed Engl ; : e202405620, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709194

RESUMO

Manganese-based layered oxides are currently of significant interest as cathode materials for sodium-ion batteries due to their low toxicity and high specific capacity. However, the practical applications are impeded by sluggish intrinsic Na+ migration and poor structure stability as a result of Jahn-Teller distortion and complicated phase transition. In this study, a high-entropy strategy is proposed to enhance the high-voltage capacity and cycling stability. The designed P2-Na0.67Mn0.6Cu0.08Ni0.09Fe0.18Ti0.05O2 achieves a deeply desodiation and delivers charging capacity of 158.1 mAh g-1 corresponding to 0.61 Na with a high initial Coulombic efficiency of 98.2 %. The charge compensation is attributed to the cationic and anionic redox reactions conjunctively. Moreover, the crystal structure is effectively stabilized, leading to a slight variation of lattice parameters. This research carries implications for the expedited development of low-cost, high-energy-density cathode materials for sodium-ion batteries.

12.
Small ; 19(6): e2205809, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36433840

RESUMO

With an extremely high theoretical energy density, poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur (Li-S) batteries are emerging as one of the most feasible and safest battery storage systems. However, the long-term cycling performance is severely impeded by polysulfides (Li2 Sn , n = 4-8) shuttling and terrible electrode passivation from the electronic insulating Li2 S. Here, a novel cathode through chemically grafted 1-Ethyl-3-methylimidazolium bromide (EMIM+ -Br- ) to carbon nanotube (CNTs) for PEO-based Li-S batteries is reported (CNTs@EMIM-Br/S). Concretely, bi-functional mediator EMIM+ -Br- not only inhibits the polysulfides shuttling by strong chemical interactions via EMIM+ , but also facilitates the electrochemical kinetics for promoting the formation of 3D particulate Li2 S through high donor anion (Br- ). Satisfactorily, dual-function CNTs@EMIM-Br/S cathode exhibits high sulfur utilization with the capacity of up to 1298 mAh g-1 , and keeps high capacity retention of 80.2% at 0.2 C after 350 cycles, exceeding that of many reported PEO-based solid-state Li-S batteries. This work will open a new door for rationally designed architecture to enable the practical applications of advanced Li-S batteries.

13.
Nano Lett ; 22(6): 2538-2546, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266715

RESUMO

Aqueous zinc iodide (Zn-I2) batteries are promising large-scale energy-storage devices. However, the uncontrollable diffuse away/shuttle of soluble I3- leads to energy loss (low Coulombic efficiency, CE), and poor reversibility (self-discharge). Herein, we employ an ordered framework window within a zeolite molecular sieve to restrain I3- crossover and prepare zeolite molecular sieve particles into compact, large-scale, and flexible membranes at the engineering level. The as-prepared membrane can confine I3- within the catholyte region and restrain its irreversible escape, which is proved via space-resolution and electrochemical in situ time-resolution Raman technologies. As a result, overcharge/self-discharge and Zn corrosion are effectively controlled by zeolite separator. After replacing the typically used glass fiber separator to a zeolite membrane, the CE of Zn-I2 battery improves from 78.9 to 98.6% at 0.2 A/g. Besides, after aging at the fully charged state for 5.0 h, self-discharge is restrained and CE is enhanced from 44.0 to 85.65%. Moreover, the Zn-I2 cell maintains 91.0% capacity over 30,000 cycles at 4.0 A/g.

14.
Angew Chem Int Ed Engl ; 62(44): e202310894, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698488

RESUMO

Li-O2 battery (LOB) is a promising "beyond Li-ion" technology with ultrahigh theoretical energy density (3457 Wh kg-1 ), while currently impeded by the sluggish cathodic kinetics of the reversible gas-solid reaction between O2 and Li2 O2 . Despite many catalysts are developed for accelerating the conversion process, the lack of design guidance for achieving high performance makes catalysts exploring aleatory. The Sabatier principle is an acknowledged theory connecting the scaling relationship with heterogeneous catalytic activity, providing a tradeoff strategy for the topmost performance. Herein, a series of catalysts with wide-distributed d-band centers (i.e., wide range of adsorption strength) are elaborately constructed via high-entropy strategy, enabling an in-depth study of the Sabatier relations in electrocatalysts for LOBs. A volcano-type correlation of d-band center and catalytic activity emerges. Both theoretical and experimental results indicate that a moderate d-band center with appropriate adsorption strength propels the catalysts up to the top. As a demonstration of concept, the LOB using FeCoNiMnPtIr as catalyst provides an exceptional energy conversion efficiency of over 80 %, and works steadily for 2000 h with a high fixed specific capacity of 4000 mAh g-1 . This work certifies the applicability of Sabatier principle as a guidance for designing advanced heterogeneous catalysts assembled in LOBs.

15.
Angew Chem Int Ed Engl ; 62(12): e202216174, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36695749

RESUMO

Cation migration often occurs in layered oxide cathodes of lithium-ion batteries due to the similar ion radius of Li and transition metals (TMs). Although Na and TM show a big difference of ion radius, TMs in layered cathodes of sodium-ion batteries (SIBs) can still migrate to Na layer, leading to serious electrochemical degeneration. To elucidate the origin of TM migration in layered SIB cathodes, we choose NaCrO2 , a typical layered cathode suffering from serious TM migration, as a model material and find that the TM migration is derived from the random desodiation and subsequent formation of Na-free layer at high charge potential. A Ru/Ti co-doping strategy is developed to address the issue, where the doped active Ru is first oxidized to create a selective desodiation and the doped inactive Ti can function as a pillar to avoid complete desodiation in Ru-contained TM layers, leading to the suppression of the Na-free layer formation and subsequent enhanced electrochemical performance.

16.
Angew Chem Int Ed Engl ; 62(41): e202310143, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37578683

RESUMO

The moderate reversibility of Zn anodes, as a long-standing challenge in aqueous zinc-ion batteries, promotes the exploration of suitable electrolyte additives continuously. It is crucial to establish the absolute predominance of smooth deposition within multiple interfacial reactions for stable zinc anodes, including suppressing side parasitic reactions and facilitating Zn plating process. Trehalose catches our attention due to the reported mechanisms in sustaining biological stabilization. In this work, the inter-disciplinary application of trehalose is reported in the electrolyte modification for the first time. The pivotal roles of trehalose in suppressed hydrogen evolution and accelerated Zn deposition have been investigated based on the principles of thermodynamics as well as reaction kinetics. The electrodeposit changes from random accumulation of flakes to dense bulk with (002)-plane exposure due to the unlocked crystal-face oriented deposition with trehalose addition. As a result, the highly reversible Zn anode is obtained, exhibiting a high average CE of 99.8 % in the Zn/Cu cell and stable cycling over 1500 h under 9.0 % depth of discharge in the Zn symmetric cell. The designing principles and mechanism analysis in this study could serve as a source of inspiration in exploring novel additives for advanced Zn anodes.

17.
Chem Soc Rev ; 50(23): 13189-13235, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34719701

RESUMO

Attempts to utilize lithium-ion batteries (LIBs) in large-scale electrochemical energy storage systems have achieved initial success, and solid-state LIBs using metallic lithium as the anode have also been well developed. However, the sharply increased demands/costs and the limited reserves of the two most important metal elements (Li & Co) for LIBs have raised concerns about future development. Sodium-ion batteries (SIBs) equipped with advanced cobalt-free cathodes show great potential in solving both "lithium panic" and "cobalt panic", and have made remarkable progress in recent years. In this review, we comprehensively summarize the recent advances of high-performance cobalt-free cathode materials for advanced SIBs, systematically analyze the conflicts of structural/electrochemical stability with intrinsic insufficiencies of cobalt-free cathode materials, and extensively discuss the strategies of constructing stable cobalt-free cathode materials by making full use of non-cobalt transition-metal elements and suitable crystal structures, all of which aim to provide insights into the key factors (e.g., phase transformation, particle cracks, crystal defects, lattice distortion, lattice oxygen oxidation, morphology, transition-metal migration/dissolution, and the synergistic effects of composite structures) that can determine the stability of cobalt-free cathode materials, provide guidelines for future research, and stimulate more interest on constructing high-performance cobalt-free cathode materials.

18.
Angew Chem Int Ed Engl ; 61(20): e202200410, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226757

RESUMO

Low-cost and scalable sodium ion (Na-ion) batteries serve as an ideal alternative to the current lithium-ion batteries. To compensate for the shortage of energy density, the most accessible solution is developing a high-voltage anode-free configuration comprising a lightweight Al current collector on the anode and a high-voltage sodiumized cathode. However, it imposes stringent Na reversibility and high-voltage stability requirements on the electrolyte. A 3A zeolite molecular sieve film is rationally designed, and a highly aggregated solvation structure is constructed through the size effect. It suppresses the trace but continuous oxidative decomposition and extends the oxidative stability to 4.5 V without sacrificing the Na reversibility of the anode (99.91 %). Thus, we can make anode-free cells with high energy density of 369 and 372 W h kg-1 for 4.0 and 4.25 V class cells, respectively. Furthermore, this strategy enables a long lifespan (250 cycles) for 4.0 V-class anode-free cells.

19.
Angew Chem Int Ed Engl ; 61(30): e202206340, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35607934

RESUMO

The sodium (Na)-metal batteries hold great promise as a sustainable technology owing to the high element abundance and low cost. However, the generally used carbonate electrolytes remain highly reactive towards Na metal, leading to flammable gas evolution. Here, we propose an electrolyte sieving strategy to separate anion-mediated ion-pairs from dilute electrolytes by introducing a 3A zeolite molecular sieve film. The anion-mediated ion-pair firstly weakens the electron-withdrawing property of the cation, which effectively suppresses the gassing. In addition, the sieved electrolyte promotes the formation of robust inorganic-dominated solid electrolyte interphases. Therefore, it contributes to stable Na plating/stripping in Na|Al half cells with Coulombic efficiency maintaining at 98.5 % and a long service life of 800 cycles in full cells. Moreover, the electrode stability is well preserved even under harsh conditions of high temperature and ester-based electrolytes with higher reactivity.

20.
Angew Chem Int Ed Engl ; 61(40): e202207225, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35945900

RESUMO

Compared with the polycrystal (PC) Ni-rich cathode materials, the single-crystal (SC) counterpart displayed excellent structural stability, high reversible capacity and limited voltage decay during cycling, which received great attention from academics and industry. However, the origin of fascinating high-voltage stability within SC is poorly understood yet. Herein, we tracked the evolution of phase transitions, in which the destructive volume change and H3 phase formation presented in PC, are effectively suppressed in SC when cycling at a high cut-off voltage of 4.6 V, further clarifying the origin of high-voltage stability in SC cathode. Moreover, SC electrode displayed crack-free morphology, and excellent electrochemical stability during long-term cycling, whereas PC suffered severe capacity and voltage fade because of the spinel-like phase, decoding the failure mechanisms of PC and SC during cycling at high cut-off voltages. This finding provides universal insights into high-voltage stability and failure mechanisms of layered Ni-rich cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA