Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797334

RESUMO

In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.


Assuntos
Proteínas de Artrópodes , Braquiúros , Hemócitos , Imunidade Inata , Animais , Braquiúros/genética , Braquiúros/imunologia , Hemócitos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/imunologia , Regulação da Expressão Gênica/imunologia , Proliferação de Células
2.
Ecotoxicol Environ Saf ; 273: 116126, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387141

RESUMO

Nanopolystyrene (NP) and phoxim (PHO) are common environmental pollutants in aquatic systems. We evaluated the toxic effects of exposure to ambient concentrations of NP and/or PHO in the intestines of the Chinese mitten crab (Eriocheir sinensis). Our study showed that histopathological changes were observed in the intestines. Specifically, NP and/or PHO exposure increased intraepithelial lymphocytes. Furthermore, NP and/or PHO exposure induced oxidative stress, as evidenced by a significant decrease in superoxide dismutase activity (SOD), peroxidase activity (POD), and total antioxidant capacity (T-AOC). Pro-inflammatory gene expression and transcriptome analysis demonstrated that NP and/or PHO exposure induced the intestinal inflammatory response. Transcriptome results showed that NP and/or PHO exposure upregulated the NF-κB signaling pathway, which is considered a key pathway in the inflammatory response. Additionally, the expression of pro-inflammatory genes significantly increased after a single exposure to NP or PHO, but it exhibited a significant decrease after the co-exposure. The downregulation of these genes in the co-exposure group likely suggested that the co-exposure mitigated intestinal inflammation response in E. sinensis. Collectively, our findings mainly showed that NP and/or PHO exposure at ambient concentrations induces oxidative stress and inflammatory response in the intestines of E. sinensis.


Assuntos
Braquiúros , Compostos Organotiofosforados , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Intestinos , Inflamação/induzido quimicamente , Braquiúros/metabolismo
3.
J Transl Med ; 21(1): 277, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095548

RESUMO

BACKGROUND: Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS: The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS: Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION: These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Camundongos , Animais , Farmacologia em Rede , RNA Ribossômico 16S , Camundongos Transgênicos
4.
Cancer Cell Int ; 23(1): 190, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660001

RESUMO

BACKGROUND: Docetaxel (DTX) resistance reduces therapeutic efficacy in prostate cancer (PCa). Accumulating reports support the role of phytochemicals in the reversal of DTX resistance. This study aimed to determine whether Epimedium brevicornu and Curcuma zedoaria extracts (ECe), specially icariin-curcumol, attenuates DTX resistance and explore their potential mechanisms. METHODS: Regulatory pathways were predicted between ECe active ingredients and PCa using network pharmacology. DTX-resistant cell LNCaP/R were established based on DTX-sensitive LNCaP, and xenograft models were further established. Active ingredients in ECe by HLPC-MS were identified. The binding of icariin and curcumol to the target was analyzed by molecular docking. Biochemical experiments were applied to determine the possible mechanisms by which Icariin-Curcumol regulates DTX sensitivity. RESULTS: Akt1 and the PI3K-Akt signaling pathway were predicted as the primary functional target between drug and PCa. ECe and DTX inhibited xenograft tumor growth, inflammation, cell viability and promoted apoptosis. Icariin and curcumol were detected in ECe, and icariin and curcumol docked with Akt1. ECe, Icariin-Curcumol and DTX downregulated AR, PSA, PI3K, Akt1, mTOR, and HIF-1ɑ. Moreover, ECe, Icariin-Curcumol and DTX increased glucose and PDH, decreased lactic acid, ATP and LDH, and downregulated c-Myc, hnRNPs, VEGF, PFK1, and PKM2. Notably, the anti-PCa effect of DTX was attenuated compared to ECe or Icariin-Curcumol in the LNCaP/R model. The combined effect of Icariin-Curcumol and DTX was superior to that of DTX. CONCLUSION: Our data support that Icariin-Curcumol reverses DTX resistance by inhibiting the PI3K-Akt signaling and the Warburg effect, providing new ideas for improving therapeutic measures for PCa.

5.
Diabet Med ; 40(7): e15031, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36537855

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) remains a serious chronic diabetic complication that can lead to disability. CircRNA-itchy E3 ubiquitin protein ligase (circ-ITCH) was observed to be down-regulated in diabetic retinopathy and diabetic nephropathy, and overexpression of circ-ITCH could inhibit the processes of these diseases. However, the detailed physiological and pathological functions of circ-ITCH in wound healing of DFU remain undetermined. METHODS: Exosomes derived from bone marrow stromal cells (BMSCs) were isolated and identified. Cell viability and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by cell counting kit-8 (CCK-8) and tube formation assays, respectively. The interplays of circ-ITCH, TATA-Box-binding protein associated factor 15 (TAF15) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA were analysed by RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) combined immunofluorescent staining and RNA pull-down assays. qRT-PCR, western blot or immunohistochemistry (IHC) were used to measure the expression of circ-ITCH, TAF15, Nrf2, vascular endothelial growth factor (VEGFR) and ferroptosis-related makers. The mice DFU model was established to verify the in vitro results. RESULTS: Circ-ITCH was down-regulated in in vitro and in vivo models of DFU. Deferoxamine (DFO), an iron chelating agent, improved the viability and angiogenic ability of high glucose (HG)-treated HUVECs. Overexpression of circ-ITCH or co-cultured with exosomal circ-ITCH from BMSCs could alleviate HG-induced ferroptosis and improve the angiogenesis ability of HUVECs. Circ-ITCH in HUVECs recruited TAF15 protein to stabilize Nrf2 mRNA, thus activating the Nrf2 signalling pathway and suppressing ferroptosis. Exosomal circ-ITCH from BMSCs also accelerated the wound healing process by inhibiting ferroptosis in the DFU mice in a time-dependent manner. CONCLUSION: Exosomal circ-ITCH from BMSCs inhibited ferroptosis and improved the angiogenesis of HUVECs through activation of the Nrf2 signalling pathway by recruiting TAF15 protein, ultimately accelerating the wound healing process in DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Ferroptose , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Pé Diabético/terapia , Pé Diabético/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Hibridização in Situ Fluorescente , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cicatrização , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34536567

RESUMO

The sesquiterpenoid methyl farnesoate (MF), a de-epoxide form of insect juvenile hormone III (JH III), plays an essential role in regulating many crucial physiological processes in crustaceans including vitellogenesis and reproduction. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is an important rate-limiting enzyme in the mevalonate pathway, which is critical for the synthesis of JH III and MF. In the present study, a full-length cDNA encoding HMGR (EsHMGR) in Eriocheir sinensis was isolated and characterised. Sequence analysis of EsHMGR revealed that it belongs to Class I HMGR family proteins with HMG-CoA-binding and NADPH-binding domains, both important for HMGR activity. In addition to its ubiquitous tissue expression, expression of EsHMGR was highly specific to the ovary, the main site of Vg synthesis. During ovarian development, EsHMGR expression in ovary displayed a stage-specific pattern, and was correlated with expression of vitellogenin (EsVg) in hepatopancreas, which suggests that EsHMGR possibly involved in vitellogenesis. To further investigate the functional role of EsHMGR in vitellogenin biosynthesis in E. sinensis, RNA interference-mediated gene silencing was carried out both in vitro and in vivo. Quantitative PCR results showed that injection of EsHMGR double-stranded RNA (dsRNA) led to a significant decrease in EsVg expression levels in ovary and hepatopancreas both in vitro and in vivo. Taken together, the results suggest that EsHMGR is involved in vitellogenin biosynthesis in female E. sinensis, which may provide a new resource for HMGR enzymes participating in reproduction in crustaceans.


Assuntos
Braquiúros/genética , Hidroximetilglutaril-CoA Redutases/genética , Vitelogênese/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Braquiúros/metabolismo , Clonagem Molecular , DNA Complementar/genética , Feminino , Perfilação da Expressão Gênica , Hepatopâncreas/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Ovário/metabolismo , Filogenia , Interferência de RNA , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Vitelogeninas/biossíntese , Vitelogeninas/genética
7.
Transl Neurodegener ; 13(1): 7, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254235

RESUMO

Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Envelhecimento , Encéfalo , Transtornos da Memória
8.
Free Radic Biol Med ; 224: 204-219, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197597

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a leading cause of dementia. The aging brain is particularly vulnerable to various stressors, including increased levels of ceramide. However, the role of ceramide in neuronal cell senescence and AD progression and whether icariin, a natural flavonoid glucoside, could reverse neuronal senescence remain inadequately understood. AIM: In this study, we explore the role of ceramide in neuronal senescence and AD, and whether icariin can counteract these effects. METHODS: We pretreated HT-22 cells with icariin and then induced senescence with ceramide. Various assays were employed to assess cell senescence, such as reactive oxygen species (ROS) production, cell cycle progression, ß-galactosidase staining, and expression of senescence-associated proteins. In vivo studies utilized APP/PS1 mice and C57BL/6J mice injected with ceramide to evaluate behavioral changes, histopathological alterations, and senescence-associated protein expression. Transcriptomics, molecular docking, molecular dynamics simulations, and cellular thermal shift assays were employed to verify the interaction between icariin and P53. The specificity of icariin targeting of P53 was further confirmed through rescue experiments utilizing the P53 activator Navtemadlin. RESULTS: Our data demonstrated that ceramide could induce neuronal senescence and AD-related pathologies, which were reversed by icariin. Moreover, molecular studies revealed that icariin directly targeted P53, and its neuroprotective effects were attenuated by P53 activation, providing evidence for the role of P53 in icariin-mediated neuroprotection. CONCLUSION: Icariin demonstrates a protective effect against ceramide-induced neuronal senescence by inhibiting the P53 pathway. This identifies a novel mechanism of action for icariin, offering a novel therapeutic approach for AD and other age-related neurodegenerative diseases.

9.
Nanomaterials (Basel) ; 14(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39269080

RESUMO

Gold-assisted exfoliation can fabricate centimeter- or larger-sized monolayers of van der Waals (vdW) semiconductors, which is desirable for their applications in electronic and optoelectronic devices. However, there is still a lack of control over the exfoliation processes and a limited understanding of the atomic-scale mechanisms. Here, we tune the MoS2-Au interface using controlled external pressure and reveal two atomic-scale prerequisites for successfully producing large-area monolayers of MoS2. The first is the formation of strong MoS2-Au interactions to anchor the top MoS2 monolayer to the Au surface. The second is the integrity of the covalent network of the monolayer, as the majority of the monolayer is non-anchored and relies on the covalent network to be exfoliated from the bulk MoS2. Applying pressure or using smoother Au films increases the MoS2-Au interaction, but may cause the covalent network of the MoS2 monolayer to break due to excessive lateral strain, resulting in nearly zero exfoliation yield. Scanning tunneling microscopy measurements of the MoS2 monolayer-covered Au show that even the smallest atomic-scale imperfections can disrupt the MoS2-Au interaction. These findings can be used to develop new strategies for fabricating vdW monolayers through metal-assisted exfoliation, such as in cases involving patterned or non-uniform surfaces.

10.
J Hazard Mater ; 465: 133362, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157813

RESUMO

Migraine is a severely disabling primary neurological disorder. Although some studies have confirmed that nitrogen dioxide (NO2) pollution increases the risk of migraine, and our previous study demonstrated the role of the channel protein transient receptor potential cation channel subfamily V member 1 (TRPV1) in NO2-induced migraine, the underlying mechanisms have not been fully elucidated. This study aimed to explore the intrinsic toxicity mechanism of NO2-induced migraines using transcriptome sequencing. First, the differentially expressed genes in NO2-induced migraine, insulin-like growth factor 1 (IGF1) and miRNA miR-653-3p were identified using RNA and small RNA sequencing, and a protein interaction network was constructed using STRING to explore the possible mechanisms. Next, the targeting relationship between miR-653-3p and IGF1 was determined. NO2-induced migraine was verified by silencing miR-653-3p and IGF1, independently or in combination to regulate the protein kinase B (AKT)/TRPV1 signalling pathway through the miR-653-3p/IGF1 axis. These results indicate that the key molecular mechanism of NO2-induced migraine may be that the miR-653-3p/IGF1 axis regulates the AKT/TRPV1 signalling pathway to induce migraine. The findings of this study will further elucidate the neurotoxic mechanism of NO2-induced migraines and lay a new experimental foundation for implementing migraine-related preventive and therapeutic control measures.


Assuntos
MicroRNAs , Transtornos de Enxaqueca , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Regulação da Expressão Gênica , Dióxido de Nitrogênio , MicroRNAs/genética
11.
Phytomedicine ; 126: 154887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377720

RESUMO

BACKGROUND: The pathophysiology of diabetic encephalopathy (DE), a significant diabetes-related pathological complication of the central nervous system, is poorly understood. Ferroptosis is an iron-dependent regulated necrotic cell death process that mediates the development of neurodegenerative and diabetes-related lesions. Quercetin (QE) exerts anti-ferroptotic effects in various diseases. However, the roles of ferroptosis in DE and the potential anti-ferroptotic mechanisms of QE are unclear. PURPOSE: This study aimed to investigate if quercetin can ameliorate DE by inhibiting ferroptosis and to elucidate the potential anti-ferroptotic mechanisms of QE, thus providing a new perspective on the pathogenesis and prevention of DE. METHODS: The spontaneously type 2 diabetic Goto-Kakizak rats and high glucose (HG)-induced PC12 cells were used as animal and in vitro models, respectively. The Morris water maze test was performed to evaluate the cognition of rats. Pathological damage was examined using hematoxylin and eosin staining. Mitochondrial damage was assessed using transmission electron microscopy. Lipid peroxidation was evaluated by examining the levels of malondialdehyde, superoxide dismutase, and glutathione. Additionally, the contents of iron ions were quantified. Immunofluorescence and western blotting were carried out to poke the protein levels. Network pharmacology analysis was conducted to construct a protein-protein interaction network for the therapeutic targets of QE in DE. Additionally, molecular docking and cellular thermal shift assay was performed to examine the target of QE. RESULTS: QE alleviated cognitive impairment, decreased lipid peroxidation and iron deposition in the hippocampus, and upregulated the Nrf2/HO-1 signaling pathway. HG-induced ferroptosis in PC12 cells resulted in decreased cell viability accompanied by lipid peroxidation and iron deposition. QE mitigated HG-induced ferroptosis by upregulating the Nrf2/HO-1 pathway, which was partially suppressed upon Nrf2 inhibition. Network pharmacology analysis further indicated that the Nrf2/HO-1 signaling pathway is a key target of QE. Molecular docking experiments revealed that QE binds to KEAP1 through four hydrogen bonds. Moreover, QE altered the thermostability of KEAP1. CONCLUSION: These results indicated that QE inhibits ferroptosis in the hippocampal neurons by binding to KEAP1 and subsequently upregulating the Nrf2/HO-1 signaling pathway.


Assuntos
Encefalopatias , Diabetes Mellitus , Ferroptose , Hipoglicemia , Animais , Ratos , Proteína 1 Associada a ECH Semelhante a Kelch , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Hipocampo , Ferro
12.
Front Cardiovasc Med ; 11: 1277123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699582

RESUMO

Background: Electrocardiogram (ECG) signals are inevitably contaminated with various kinds of noises during acquisition and transmission. The presence of noises may produce the inappropriate information on cardiac health, thereby preventing specialists from making correct analysis. Methods: In this paper, an efficient strategy is proposed to denoise ECG signals, which employs a time-frequency framework based on S-transform (ST) and combines bi-dimensional empirical mode decomposition (BEMD) and non-local means (NLM). In the method, the ST maps an ECG signal into a subspace in the time frequency domain, then the BEMD decomposes the ST-based time-frequency representation (TFR) into a series of sub-TFRs at different scales, finally the NLM removes noise and restores ECG signal characteristics based on structural self-similarity. Results: The proposed method is validated using numerous ECG signals from the MIT-BIH arrhythmia database, and several different types of noises with varying signal-to-noise (SNR) are taken into account. The experimental results show that the proposed technique is superior to the existing wavelet based approach and NLM filtering, with the higher SNR and structure similarity index measure (SSIM), the lower root mean squared error (RMSE) and percent root mean square difference (PRD). Conclusions: The proposed method not only significantly suppresses the noise presented in ECG signals, but also preserves the characteristics of ECG signals better, thus, it is more suitable for ECG signals processing.

13.
Sci Rep ; 14(1): 1860, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253629

RESUMO

Cervical cancer is the second leading cause of morbidity and mortality in women worldwide. Traditional treatment methods have become limited. Naringenin, a flavonoid abundant in various fruits and herbal medicines, has demonstrated anti-tumor properties among other effects. This research undertook to elucidate the mechanism of naringenin in the context of cervical cancer treatment by leveraging network pharmacology and performing experimental validation. Initial steps involved predicting potential naringenin targets and subsequently screening for overlaps between these targets and those related to cervical cancer, followed by analysis of their interrelationships. Molecular docking was subsequently utilized to verify the binding effect of the central target. Within the framework of network pharmacology, it was discovered that naringenin might possess anti-cancer properties specific to cervical cancer. Following this, the anti-tumor effects of naringenin on Hela cell viability, migration, and invasion were assessed employing CCK-8, transwell, wound healing assays, and western blotting. Experimental data indicated that naringenin attenuates the migration and invasion of Hela cells via downregulation EGFR/PI3K/AKT signaling pathway. Thus, our findings suggest that naringenin has therapeutic impacts on cervical cancer via multiple mechanisms, primarily by inhibiting the migration and invasion through the EGFR/PI3K/AKT/mTOR pathway. This study offers fresh insights for future clinical studies.


Assuntos
Flavanonas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Células HeLa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores ErbB
14.
Heliyon ; 10(5): e26993, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468942

RESUMO

Background: Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods: Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results: TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-ß and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion: This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.

15.
Front Med (Lausanne) ; 11: 1442071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211336

RESUMO

Objective: This experimental study investigated the protective function of quercetin on the liver, spleen, and kidneys of Goto-Kakizaki (GK) rats and explores its mechanism of action on autophagy-related factors and pathways. Materials and methods: GK rats were randomly divided into three groups: DM, DM + L-Que, and DM + H-Que, with age-matched Wistar rats serving as the control group. The control and DM groups were gavaged with saline, and the quercetin-treated group was gavaged with quercetin for 8 weeks each. Weekly blood glucose levels were monitored. Upon conclusion of the experiment, blood samples were gathered for lipid and hepatic and renal function analyses. The histopathologic morphology and lipid deposition in rats were examined. Disease-related targets were identified using molecular docking methods and network pharmacology analysis. Subsequently, immunohistochemical analysis was performed, followed by Western blotting to evaluate the levels of autophagy-related proteins and proteins in the AKT/PI3K/mTOR pathway, as well as their phosphorylation levels. Results: The results showed that, compared with the control group, the DM group exhibited significant increases in blood glucose, serum liver and kidney markers, liver fat vacuoles, and inflammatory cell infiltration. Immunohistochemistry (IHC) results indicated that quercetin reduced the extensive expression of AKT, P62, and mTOR in the liver and spleen of diabetic rats. The expression of autophagy and pathway-related proteins, such as P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR, was upregulated, while the expression of LC3A/LC3B, Beclin-1, Pink-1, and Parkin was downregulated. Conversely, the quercetin group showed a reduction in liver and kidney injury serum markers by decreasing lipid deposition and cell necrosis, indicating that quercetin has protective effects on the liver, spleen, and kidneys of GK rats. Additionally, in the quercetin group, the expression of autophagy and pathway-related proteins such as LC3A/LC3B, Beclin-1, Pink-1, and Parkin was upregulated, while the expression of P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR was downregulated, with statistically significant correlations. Conclusion: Quercetin markedly ameliorates liver, spleen, and kidney damage in GK rats, potentially through the inhibition of the PI3K/Akt/mTOR pathway, promoting autophagy. This research offers a rationale to the therapeutic potential of quercetin in mitigating organ damage associated with diabetes.

16.
Food Chem ; 428: 136818, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421663

RESUMO

Two different models of electrochemiluminescence (ECL) immunosensors for the sensitive and quantitative detection of the CP4-EPSPS protein in genetically modified (GM) crops were proposed in this study. One was a signal-reduced ECL immunosensor based on nitrogen-doped graphene, graphitic carbon nitride and polyamide-amine (GN-PAMAM-g-C3N4) composites as the electrochemically active substance. The other model was a signal-enhanced ECL immunosensor based on a GN-PAMAM modified electrode for the detection of CdSe/ZnS quantum dots (QDs)-labeled antigens. The ECL signal responses of the reduced and enhanced immunosensors linearly decreased as the increase of the soybean RRS and RRS-QDs content in the range of 0.05% to 1.5% and 0.025% to 1.0%, with the limits of detection of 0.03% and 0.01% (S/N = 3), respectively. Both of the ECL immunosensors showed good specificity, stability, accuracy, and reproducibility in the analysis of real samples. The results indicate that the two immunosensors provide an ultra-sensitive and quantitative approach for the determination of the CP4-EPSPS protein. Due to their outstanding performances, the two ECL immunosensors could be useful tools for achieving the effective regulation of GM crops.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Técnicas Biossensoriais/métodos , Produtos Agrícolas/genética , Reprodutibilidade dos Testes , Medições Luminescentes/métodos , Imunoensaio , Plantas Geneticamente Modificadas/genética , Técnicas Eletroquímicas/métodos
17.
Front Genet ; 14: 1172108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636270

RESUMO

Minimal residual disease (MRD) refers to a very small number of residual tumor cells in the body during or after treatment, representing the persistence of the tumor and the possibility of clinical progress. Circulating tumor DNA (ctDNA) is a DNA fragment actively secreted by tumor cells or released into the circulatory system during the process of apoptosis or necrosis of tumor cells, which emerging as a non-invasive biomarker to dynamically monitor the therapeutic effect and prediction of recurrence. The feasibility of ctDNA as MRD detection and the revolution in ctDNA-based liquid biopsies provides a potential method for cancer monitoring. In this review, we summarized the main methods of ctDNA detection (PCR-based Sequencing and Next-Generation Sequencing) and their advantages and disadvantages. Additionally, we reviewed the significance of ctDNA analysis to guide the adjuvant therapy and predict the relapse of lung, breast and colon cancer et al. Finally, there are still many challenges of MRD detection, such as lack of standardization, false-negatives or false-positives results make misleading, and the requirement of validation using large independent cohorts to improve clinical outcomes.

18.
Toxins (Basel) ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37104231

RESUMO

Increasing evidence from experimental research suggests that exposure to microcystins (MCs) may induce lipid metabolism disorder. However, population-based epidemiological studies of the association between MCs exposure and the risk of dyslipidemia are lacking. Therefore, we conducted a population-based cross-sectional study involving 720 participants in Hunan Province, China, and evaluated the effects of MCs on blood lipids. After adjusting the lipid related metals, we used binary logistic regression and multiple linear regression models to examine the associations among serum MCs concentration, the risk of dyslipidemia and blood lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)). Moreover, the additive model was used to explore the interaction effects on dyslipidemia between MCs and metals. Compared to the lowest quartile of MCs exposure, the risk of dyslipidemia [odds ratios (OR) = 2.27, 95% confidence interval (CI): 1.46, 3.53] and hyperTG (OR = 3.01, 95% CI: 1.79, 5.05) in the highest quartile was significantly increased, and showed dose-response relationships. MCs were positively associated with TG level (percent change, 9.43%; 95% CI: 3.53%, 15.67%) and negatively associated with HDL-C level (percent change, -3.53%; 95% CI: -5.70%, -2.10%). In addition, an additive antagonistic effect of MCs and Zn on dyslipidemia was also reported [relative excess risk due to interaction (RERI) = -1.81 (95% CI: -3.56, -0.05)], and the attributable proportion of the reduced risk of dyslipidemia due to the antagonism of these two exposures was 83% (95% CI: -1.66, -0.005). Our study first indicated that MCs exposure is an independent risk factor for dyslipidemia in a dose-response manner.


Assuntos
Dislipidemias , Microcistinas , Humanos , Estudos Transversais , Microcistinas/toxicidade , Lipídeos , HDL-Colesterol , Dislipidemias/induzido quimicamente , Dislipidemias/epidemiologia , China/epidemiologia
19.
Front Cardiovasc Med ; 9: 983543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299867

RESUMO

As an important auxiliary tool of arrhythmia diagnosis, Electrocardiogram (ECG) is frequently utilized to detect a variety of cardiovascular diseases caused by arrhythmia, such as cardiac mechanical infarction. In the past few years, the classification of ECG has always been a challenging problem. This paper presents a novel deep learning model called convolutional vision transformer (ConViT), which combines vision transformer (ViT) with convolutional neural network (CNN), for ECG arrhythmia classification, in which the unique soft convolutional inductive bias of gated positional self-attention (GPSA) layers integrates the superiorities of attention mechanism and convolutional architecture. Moreover, the time-reassigned synchrosqueezing transform (TSST), a newly developed time-frequency analysis (TFA) method where the time-frequency coefficients are reassigned in the time direction, is employed to sharpen pulse traits for feature extraction. Aiming at the class imbalance phenomena in the traditional ECG database, the smote algorithm and focal loss (FL) are used for data augmentation and minority-class weighting, respectively. The experiment using MIT-BIH arrhythmia database indicates that the overall accuracy of the proposed model is as high as 99.5%. Furthermore, the specificity (Spe), F1-Score and positive Matthews Correlation Coefficient (MCC) of supra ventricular ectopic beat (S) and ventricular ectopic beat (V) are all more than 94%. These results demonstrate that the proposed method is superior to most of the existing methods.

20.
Toxins (Basel) ; 14(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36548730

RESUMO

Obesity, a metabolic disease caused by excessive fat accumulation in the body, has attracted worldwide attention. Microcystin-LR (MC-LR) is a hepatotoxic cyanotoxin which has been reportedly to cause lipid metabolism disorder. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for eight weeks to build obese an animal model, and subsequently, the obese mice were fed MC-LR for another eight weeks, and we aimed to determine how MC-LR exposure affects the liver lipid metabolism in high-fat-diet-induced obese mice. The results show that MC-LR increased the obese mice serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), indicating damaged liver function. The lipid parameters include serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and liver TG, which were all increased, whilst the high-density lipoprotein cholesterol (HDL-c) was decreased. Furthermore, after MC-LR treatment, histopathological observation revealed that the number of red lipid droplets increased, and that steatosis was more severe in the obese mice. In addition, the lipid synthesis-related genes were increased and the fatty acid ß-oxidation-related genes were decreased in the obese mice after MC-LR exposure. Meanwhile, the protein expression levels of phosphorylation phosphatidylinositol 3-kinase (p-PI3K), phosphorylation protein kinase B (p-AKT), phosphorylation mammalian target of rapamycin (p-mTOR), and sterol regulatory element binding protein 1c (SREBP1-c) were increased; similarly, the p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, and SREBP1/ß-actin were significantly up-regulated in obese mice after being exposed to MC-LR, and the activated PI3K/AKT/mTOR/SREBP1 signaling pathway. In addition, MC-LR exposure reduced the activity of superoxide dismutase (SOD) and increased the level of malondialdehyde (MDA) in the obese mice's serum. In summary, the MC-LR could aggravate the HFD-induced obese mice liver lipid metabolism disorder by activating the PI3K/AKT/mTOR/SREBP1 signaling pathway to hepatocytes, increasing the SREBP1-c-regulated key enzymes for lipid synthesis, and blocking fatty acid ß-oxidation.


Assuntos
Fígado Gorduroso , Transtornos do Metabolismo dos Lipídeos , Fígado , Toxinas Marinhas , Microcistinas , Animais , Camundongos , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA