Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 12(2): 840-851, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404565

RESUMO

Carotenoids are lipophilic compounds that provide important health-related benefits for human body functions. However, they have low water solubility and chemical stability, hence their incorporation in aqueous-based foods requires the use of emulsion-based lipid carriers. This work aimed at elucidating whether their inclusion in emulsion-based Solid Lipid Nanoparticles (SLNs) can provide a protective effect against ß-carotene degradation under different environmental conditions in comparison to liquid lipid nanoemulsions. Glyceryl Stearate (GS) was mixed with Medium Chain Trygliceride (MCT) oil to formulate SLNs. SLNs presented a significantly enhanced ß-carotene retention and a slower ß-carotene degradation kinetics at increasing storage temperature, acidic conditions and light exposure. In fact, SLNs formulated with 5% GS in the lipid phase and stored at 4 °C and pH 7 retained almost 70% of the initially encapsulated ß-carotene after 55 days of storage, while it was completely degraded when it was encapsulated in liquid nanoemulsions. Moreover, it was observed that the solid lipid type affects the protective effect that SLNs may confer to the encapsulated lipophilic bioactives. Saturated long chain triglycerides, such as hydrogenated palm oil (HPO) presented slower and lower ß-carotene degradation kinetics in comparison to solid lipids composed of MCT, such as Coconut Oil (CNUT) or MCT + 5% of GS in the lipid phase. This work evidences that the incorporation of lipophilic bioactive compounds, such as ß-carotene, into SLNs slows down their degradation kinetics which might be attributed to a reduced diffusion of the oxidative species due to the lipid crystalline structure.


Assuntos
Lipídeos/farmacologia , Nanopartículas/química , beta Caroteno/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Temperatura
2.
Food Res Int ; 149: 110658, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600660

RESUMO

Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.


Assuntos
Bacteriocinas , Óleos Voláteis , Antibacterianos/farmacologia , Bacillus cereus , Metabolômica , Óleos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA