Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Phytochem Anal ; 35(1): 17-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37501406

RESUMO

INTRODUCTION: Saposhnikovia divaricata (Turcz.) Schischk is one of the most widely used Chinese herbs worldwide. It has anti-inflammatory and analgesic properties and hence has a high clinical value. As the moisture level in S. divaricata is high after harvest, it requires drying. OBJECTIVE: We aimed to find a scientific drying method and optimize the drying conditions of the best drying method of S. divaricata using response surface methodology (RSM). METHODOLOGY: The effects of 4 different drying methods on the contents of prim-O-glucosylcimifugin, cimifugin, 5-O-methylvisamminol, and sec-O-glucosylhamaudol were determined using high-performance liquid chromatography. Chroma, the rehydration ratio, and active component content were used as indices, and slice thickness, drying temperature, and drying time were used as independent variables to optimize the drying conditions of the optimal drying method of S. divaricata using RSM combined with the Box-Behnken design. RESULTS: The results showed that the optimal drying conditions were as follows: slice thickness, 4.00 mm; drying temperature, 60°C; and drying time, 15 h. CONCLUSION: Under optimal drying conditions, the measured values were extremely close to the predicted values. The results of variance analysis showed that the model had a high degree of fit and the drying conditions of S. divaricata were optimized successfully.


Assuntos
Apiaceae , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Temperatura , Apiaceae/química , Cromatografia Líquida de Alta Pressão/métodos
2.
J Environ Manage ; 351: 119668, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056333

RESUMO

Laying hen manure (LHM) is a major source of pollution due to its high nitrogen (N) and moisture content (MC). Therefore, reducing the MC of LHM is necessary to retain its recyclable value and reduce environmental pollution. One effective way is by incorporating sodium bentonite (SB) and wheat straw (WS) as amendments in the LHM. This work aimed to optimize the drying conditions of LHM and investigate the effect of SB and WS utilization on the dehydration rate, reduction of crude protein (CP), and reduction of ammonium-N (N [Formula: see text] -N). The response surface methodology (RSM) was used to optimize these processes. For this purpose, two sets of experiments (drying of LHM with and without SB and Ws) were designed. The independent parameters were air temperature (70, 80, and 90 °C), air velocity (1, 1.5, and 2 m s-1), layer thickness (5, 10, and 15 mm), SB (2%, 4%, and 6%), and WS (3%, 7.5%, and 12%). The results indicated that temperature and WS had the most significant influence on all responses. To maximize the dehydration rate and minimize the reduction of CP and N [Formula: see text] -N, the optimal conditions were a temperature of 78 °C, air velocity of 1 m s-1, and layer thickness of 5 mm in the first set of experiments, and a temperature of 80 °C, air velocity of 1.5 m s-1, layer thickness of 11 mm, 6% SB, and 12% WS in the second set of experiments. Under the optimum conditions, LHM treated with 6% SB and 12% WS retained 10% more CP and 58% more N [Formula: see text] -N than untreated LHM. Therefore, according to the obtained results, SB and WS are recommended as additives to reduce the CP and N [Formula: see text] -N losses of LHM during the drying process.


Assuntos
Compostos de Amônio , Esterco , Animais , Feminino , Triticum , Bentonita , Galinhas , Desidratação , Sódio
3.
J Sci Food Agric ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183171

RESUMO

BACKGROUND: The delayed drying of newly harvested tiger nuts can lead to mold and rancidity. Timely drying is therefore important. However, few studies have analyzed the impact of hot-air drying on the quality of tiger-nut oil and starch, making it essential to establish optimal drying conditions. RESULTS: The results showed that the drying temperature was the most important factor affecting the drying speed, followed by drying airflow rate and loading capacity. A logarithmic model can describe the hot-air drying process of tiger nuts. The oil yield of tiger nut was highest after drying at 60 °C, reaching 22.40%. Meanwhile, the starch extracted from after drying at 60 °C had the highest solubility and expansion rate, 4.77% and 9.74%, respectively. Starch has the highest viscosity after drying at 70 °C, and it forms gel easily after aging. CONCLUSION: High-quality tiger nuts should be produced under optimal conditions: a hot-air drying temperature of 60 °C, an airflow rate of 1.0 m s-1, and a loading capacity of 100 g. The results of this study have practical implications for the effective drying of tiger nuts. © 2024 Society of Chemical Industry.

4.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049733

RESUMO

Drying is one of the oldest methods of obtaining a product with a long shelf-life. Recently, this process has been modified and accelerated by the application of pulsed electric field (PEF); however, PEF pretreatment has an effect on different properties-physical as well as chemical. Thus, the aim of this study was to investigate the effect of pulsed electric field pretreatment and air temperature on the course of hot air drying and selected chemical properties of the apple tissue of Gloster variety apples. The dried apple tissue samples were obtained using a combination of PEF pretreatment with electric field intensity levels of 1, 3.5, and 6 kJ/kg and subsequent hot air drying at 60, 70, and 80 °C. It was found that a higher pulsed electric field intensity facilitated the removal of water from the apple tissue while reducing the drying time. The study results showed that PEF pretreatment influenced the degradation of bioactive compounds such as polyphenols, flavonoids, and ascorbic acid. The degradation of vitamin C was higher with an increase in PEF pretreatment intensity level. PEF pretreatment did not influence the total sugar and sorbitol contents of the dried apple tissue as well as the FTIR spectra. According to the optimization process and statistical profiles of approximated values, the optimal parameters to achieve high-quality dried apple tissue in a short drying time are PEF pretreatment application with an intensity of 3.5 kJ/kg and hot air drying at a temperature of 70 °C.


Assuntos
Malus , Malus/química , Temperatura , Frutas/química , Polifenóis/análise , Ácido Ascórbico/química
5.
Plant Foods Hum Nutr ; 78(4): 704-709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804441

RESUMO

The aim of this work was to study the effect of blanching and ultrasound pretreatments on drying and quality characteristics of apple peel. Blanching was conducted in boiling water, ultrasound in a water bath, and drying in a batch tray dryer. The product obtained was ground into a flour, and assessed for color, water activity, proximate composition, sugars, and bioactive compounds. Results showed that effective moisture diffusivity increases with a decrease in product moisture content, being such dependence well described by a second order polynomial model. Average drying rate was higher and product moisture content was lower for blanched and sonicated flour, especially for the former. Such result suggests that blanching and ultrasound enhance water removal during drying of apple peel. Physical properties were significantly affected by pretreatments, being more intense red color and lower water activity obtained for sonicated flour. Nutritional and bioactive properties were also significantly affected by pretreatments, being lower sugar, higher protein, fiber, catechin and epicatechin content observed for blanched flour. Summarizing, blanching and ultrasound pretreatments improve drying of apple peel, both regarding process efficiency and product quality.


Assuntos
Malus , Farinha , Dessecação/métodos , Frutas , Água
6.
J Food Sci Technol ; 60(3): 996-1005, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908340

RESUMO

The shelf life of dried garlic powder packaged in high-density polyethylene (HDPE), low-density polyethylene (LDPE), and aluminum laminated pouch (ALP) under accelerated storage temperature (5° to 40 °C) and humidity (70-90% RH) conditions, was predicted using GAB mathematical model. The water activity value reduced significantly from 0.83 to 0.31 as the moisture content reduced. The temperature had a negative effect on color change and the lightness value and whiteness index of garlic powder significantly decreased from 62.21 to 56.06 and 50.67 to 44.91 respectively, when temperature increased from 70° to 90° C. The storage life of garlic powder was 24, 78 and 210 days in LDPE, HDPE, and ALP, respectively under domestic storage conditions (40 °C, 90% RH). Therefore, under industrial storage conditions (5 °C, 70% RH), garlic could be preserved for 1.32, 4.30 and 7.28 years in LDPE, HDPE and ALP, respectively.

7.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807311

RESUMO

Freshly harvested Boletus edulis mushrooms are subjected to rapid loss of quality due to the high moisture content and enzymatic activity. Drying time, quality characteristics, microstructural and thermal properties were studied in mushrooms ground to puree subjected to hot air drying (HAD), freeze drying (FD) and centrifugal vacuum drying (CVD). The influence of hot water blanching and UV-C pretreatments was additionally investigated. The rehydration ability of mushroom powders was improved by FD, especially without pretreatment or combined to UV-C exposure. The HAD and CVD, with no pretreatment or combined to UV-C, ensured good preservation of phenolics and antioxidant activity of dried mushrooms. The total difference in color of mushroom pigments extracted in acetone was lower in samples dried by CVD and higher in ones by FD. Blanching before HAD produced whiter product probably due to the reduced polyphenoloxidase activity. Scanning Electron Microscopy (SEM) analysis showed fewer physical changes in FD-samples. Heat-induced structural changes were noticed by Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and Derivative Thermogravimetry (DTG) analysis, in particular of biopolymers, confirmed by ATR-FTIR analysis. Based on our complex approach, the UV pretreatment of mushrooms could be a better alternative to water blanching. Centrifugal vacuum emerged as a new efficient drying method in terms of bioactive compounds, color and thermal stability, while FD led to better rehydration ability and microstructure.


Assuntos
Agaricales , Doenças Cardiovasculares , Antioxidantes/química , Basidiomycota , Dessecação/métodos , Liofilização , Vácuo , Água/química
8.
J Sci Food Agric ; 102(3): 1076-1084, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312852

RESUMO

BACKGROUND: Barley grass (BG) powder has gradually attracted researchers' attention for its abundant nutritional components and functional activity. Yet, the effect of different drying methods on storage stability is still unclear. In this study, BG was subjected to hot-air drying (HAD), steam blanching prior to hot-air drying (SHAD), vacuum freeze drying (VFD), and far-infrared drying (FID). Effects of different drying methods on BG powder during storage were evaluated. RESULTS: Moisture content of dried samples during storage decreased at 50 °C, but at 37 °C increased first and then remained stable. The a* value of SHAD BG powder before storage was the highest (-6.51), followed by FID, HAD and VFD. Moreover, the a* value increased during the storage process. Contents of l-ascorbic acid and total chlorophyll in samples dried by VFD were 28.29 and 7.8 g kg-1 , respectively. The degradation of chlorophyll a and b followed a first-order kinetics model and was modeled by the Arrhenius equation. The activation energies for chlorophyll a were 83.68, 83.21, 62.29 and 76.64 kJ mol-1 in BG powder dried by SHAD, FID, VFD and HAD, respectively. The activation energies for chlorophyll b were 66.76, 48.03, 61.02 and 58.01 kJ mol-1 in SHAD, FID, VFD and HAD BG powder, respectively. CONCLUSION: VFD had the highest preservation of color, l-ascorbic acid and chlorophyll compared to HAD, SHAD and FID. SHAD shortened the drying time and delayed the degradation of l-ascorbic acid and chlorophyll during storage. © 2021 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Hordeum/química , Ácido Ascórbico/química , Clorofila/química , Cor , Dessecação/métodos , Armazenamento de Alimentos , Folhas de Planta/química , Caules de Planta/química , Pós/química
9.
Zhongguo Zhong Yao Za Zhi ; 47(4): 922-930, 2022 Feb.
Artigo em Zh | MEDLINE | ID: mdl-35285191

RESUMO

The present study explored the kinetics and variation of volatile components of Atractylodis Macrocephalae Rhizoma during the hot-air drying process to obtain the optimal process parameters under multiple goals such as drying efficiency and drying quality. The dry basis moisture content and drying rate curves along with the change of drying time of Atractylodis Macrocephalae Rhizoma were investigated at five levels of drying air temperatures(30, 40, 50, 60, and 70 ℃). The relationship between moisture ratio and time in the drying process of Atractylodis Macrocephalae Rhizoma was fitted and verified by Midilli model, Page model, Overhults model, Modified Page model, Logaritmic model, Two terms Exponential model, and Newton model. Meanwhile, the effective diffusion coefficient of moisture(D_(eff)) and activation energy(E_a) in Atractylodis Macrocephalae Rhizoma were calculated under different drying air temperatures. GC-MS was used to determine the volatile components and content changes of the fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures. The dry basis moisture content and drying rate of Atractylodis Macrocephalae Rhizoma were closely related to the temperature of the drying medium, and the moisture of the Atractylodis Macrocephalae Rhizoma decreased with the prolonged drying time. As revealed by the drying rate curve, the drying rate increased with the increase in hot air temperature, and the migration of moisture was accelerated. The comparison of the correlation coefficient(R~2), chi-square(χ~2), and root mean standard error(RMSE) of each model indicated that the parameter average of the Midilli model had the highest degree of fit, with R~2=0.999 2, χ~2=8.78×10~(-5), and RMSE=8.20×10~(-3). Besides, the D_(eff) at 30-70 ℃ was in the range of 1.04×10~(-9)-6.28×10~(-9) m~2·s~(-1), and E_a was 37.47 kJ·mol~(-1). The volatile components of fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures were determined by GC-MS, and 18, 18, 18, 17, 17, and 18 compounds were identified respectively, which accounted for more than 84.76% of the volatile components. In conclusion, the hot-air drying of Atractylodis Macrocephalae Rhizoma can be model-fitted and verified and the variation law of the moisture and volatile components of Atractylodis Macrocephalae Rhizoma with temperature is obtained. This study is expected to provide new ideas for exploring the drying characteristics and quality of aromatic Chinese medicine.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Temperatura Alta , Cinética , Rizoma
10.
J Food Sci Technol ; 59(2): 625-635, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35185181

RESUMO

Papad is a crunchy wafer-like snack food consumed all over India and other Asian countries. Traditionally, sun-drying requires more drying time and reduces less moisture from papad, which absorbs more oil during frying. The current study was carried out using microwave-assisted hot air drying (MAHD) to reduce fried papad oil content. Box-Behnken design (BBD) was selected to perform 17 trials for drying of papad using MAHD along with different power levels (300, 600, and 900 W), exposure times (30, 60, and 90 s) and hot air temperatures (40, 50 and 60 °C). The fried papad characteristics were evaluated in terms of oil content, oil uptake ratio, porosity, expansion and texture using standard procedures. MAHD helped reduce higher than 30% of fried papad oil content compared to the traditional method. Scanning electron microscope (SEM) confirmed that the MAHD papad has fewer pore structures than sun dried-fried papad. Using response surface methodology (RSM), the optimized parameters of MAHD was found to be 653 W power level with an exposure time of 56 s at 43 °C of drying temperature, which reduced oil content (7.90 ± 0.02%), oil uptake ratio (1.50 ± 0.03), porosity (16.33 ± 0.29%) and expansion (7.97 ± 0.02%) of fried papad.

11.
Molecules ; 26(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498727

RESUMO

Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the ß-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while ß-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.


Assuntos
Dióxido de Carbono/química , Composição de Medicamentos/métodos , Olea/química , Antioxidantes/química , Carotenoides/química , Clorofila/química , Azeite de Oliva/química , Extratos Vegetais/química , Polifenóis/química , Sitosteroides/química , Tocoferóis/química
12.
J Sci Food Agric ; 101(2): 603-612, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32683710

RESUMO

BACKGROUND: Seasonal persimmon (Diospyros kaki L.) crops have steadily increased in Spain; this has been linked to a significant increase in the postharvest production waste. Therefore, development of valorized products is of great interest. In this study, a hot air-drying technique was used to obtain persimmon snacks. Slices from astringent and non-astringent persimmons (submitted to de-astringency treatment) at three different ripening stages were dried at 40 and 60 °C to reach 15 ± 3% water content. RESULTS: After the drying treatment, dehydrated samples were harder, turned into a more orange hue angle, and had a reduced soluble tannin content. Dehydrated samples obtained from the astringent fruit at the most advanced ripening stage had similar soluble tannin content as the samples obtained from non-astringent fruit, especially at 60 °C. Besides, a high correlation was observed between the level of astringency perceived by consumers and the decrease of soluble tannin content. Although, in the first ripening stage, consumers preferred the snacks obtained from non-astringent fruits; in the last ripening stage, snacks produced from astringent fruits were equally accepted than the non-astringent ones. CONCLUSION: Therefore, well-accepted persimmon snacks are obtained from both astringent and non-astringent fruits when advanced ripening stages of persimmon are used. © 2020 Society of Chemical Industry.


Assuntos
Adstringentes/farmacologia , Diospyros/efeitos dos fármacos , Frutas/química , Frutas/crescimento & desenvolvimento , Cor , Dessecação , Diospyros/química , Diospyros/crescimento & desenvolvimento , Manipulação de Alimentos , Frutas/efeitos dos fármacos , Humanos , Espanha , Taninos/análise , Paladar
13.
J Sci Food Agric ; 101(5): 2063-2071, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32974959

RESUMO

BACKGROUND: Combination drying is recognized as an energy-efficient method utilized for dry product processing, and proper order of combination is a critical factor determining the effectiveness of the technique. In this study, hot air drying (HD), vacuum freeze-drying (VFD), and combination drying with different orders (HD-VFD and VFD-HD) are performed on whole Lentinula edodes and pre-cut (half-cut and quarter-cut) L. edodes. The effects of various cutting and drying approaches on drying characteristics, physicochemical properties, and microstructures of dried L. edodes were investigated. RESULTS: The longest processing time required to dry the whole L. edodes by VFD was 25 h. In contrast, the pre-cutting treatment and combination drying certainly shortened the drying time. Compared with HD, use of VFD-HD and VFD significantly decreased the shrinkage ratio, hardness, and discoloration of dried products but increased the rehydration capacity, nutrient retention, and porous microstructure. Interestingly, switching the order of combination drying provoked entirely different drying effects. Specifically, HD-VFD triggered negative effects on the shrinkage and color of dried mushrooms, and its appearance color was similar to HD-treated samples. Moreover, pre-cutting dramatically enhanced the protein content of HD-treated mushrooms, and the quarter-cut samples obtained the highest level (21.69 g kg-1 dry basis) among the three types of cutting. CONCLUSIONS: The dried L. edodes processed through pre-cutting and combination drying (VFD-HD) have optimal industrial quality, accompanied by shorter processing time. © 2020 Society of Chemical Industry.


Assuntos
Dessecação/métodos , Conservação de Alimentos/métodos , Cogumelos Shiitake/química , Cor , Dessecação/instrumentação , Conservação de Alimentos/instrumentação , Carpóforos/química , Dureza , Vácuo
14.
J Food Sci Technol ; 58(2): 474-483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568841

RESUMO

The effect of convective drying at 50, 60 and 70 °C on the drying kinetics and quality parameters of Salicornia fruticosa was investigated. To estimate the equilibrium moisture content a desorption isotherm was performed using five empirical models: Halsey, Caurie, Henderson, Smith and Oswin. The experimental data was also fitted to different drying kinetic models (Logarithmic, Two-Terms, Midilli-Kucuk and Exponential Two-Terms). A numerical simulation using the Finite Volume Method allowed us to describe the evolution of temperature and moisture content distributions during drying. The Henderson model was found to be the most suitable for predicting the equilibrium moisture content of S. fruticosa, with values of X we in the drying process of 1.51; 1.54 and 1.36 g water/g d.m for 50, 60 and 70 °C, respectively. A good agreement was found between the numerical and experimental results of temperature and moisture during Salicornia drying. The Midilli-Kucuk model presented the best fitting to the drying curves. The effects of drying on S. fruticosa were significant in two quality parameters. Antioxidant capacity decreased in ca. 45% and lightness (> L*) significantly increased at a drying temperature of 70 °C, compared to the fresh samples. The optimum drying temperature where drying time and nutrients loss was minimum was 70 °C. These results can be used to estimate the best drying conditions for producing dehydrated Salicornia. The use of halophytes as sustainable crops is promising, and the vision of their commercial production must be evaluated and considered, given water scarcity in many areas of the planet.

15.
Food Technol Biotechnol ; 58(3): 249-259, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33281481

RESUMO

RESEARCH BACKGROUND: The worldwide demand for healthy and sulphur-free dried vegetables and fruits has grown. Combined ultrasound-assisted osmotic dehydration (UOD) and application of active coatings incorporating natural preservatives represents an attractive alternative to sulphuring to preserve the sensorial and nutritional quality of dried fruits. The aim of this study is to investigate the effect of osmotic dehydration (OD) and UOD, and the use of pectin coatings (alone or with citric acid or ascorbic acid) on physical, textural and microstructural properties of hot air-dried apricots. EXPERIMENTAL APPROACH: Fresh apricot cubes (1 cm3) were pretreated with either OD at 55 °C for 30 and 45 min or UOD at two ultrasonic frequencies of 25 and 35 kHz for 30 and 45 min followed by application of active coatings with pectin alone, pectin with citric acid or pectin with ascorbic acid for 10 min. All pretreated coated samples were then hot air-dried at 60 °C until a final moisture content of 20% (wet basis) was reached. Physical (shrinkage, apparent and bulk densities), chemical (browning value and water activity) and textural properties (firmness and shrinkage), microstructure and microbial load of dried apricots were studied. RESULTS AND CONCLUSIONS: Application of OD and UOD improved physical and textural properties of the dried apricots. Moreover, apparent and bulk densities, rehydration capacity of OD and UOD pre-treated samples increased, while shrinkage, water activity and microbial load decreased. Firmness of UOD pretreated samples was significantly (p<0.05) lower than that of OD ones. Likewise, increasing ultrasound frequency from 25 to 35 kHz led to a significant decrease in F max values of dried apricots. Furthermore, coating of the processed samples with pectin and citric acid increased F max value and decreased rehydration capacity of dried apricots. Scanning electron microscopy of both OD and UOD samples illustrated improvement of textural properties. The utilization of both OD pretreatment and edible pectin coatings resulted in a decrease in browning values. However, UOD increased browning values of the dried apricots. Coating of UOD samples with pectin and ascorbic acid resulted in substantial discolouration in hot air-dried apricots. NOVELTY AND SCIENTIFIC CONTRIBUTION: This study advances the knowledge in the field of fruit drying by combined application of OD or UOD pretreatments with active edible coatings on different properties of hot air-dried apricots.

16.
J Sci Food Agric ; 100(7): 3087-3098, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32083310

RESUMO

BACKGROUND: Flavor plays a critical role in defining sensory and consumer acceptance of dried pepper, and it can be affected by temperature and moisture content during hot air drying (HAD). Thus, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to analyze changes in volatile compounds of pepper during the HAD process with different drying temperatures. RESULTS: A total of 45 volatile flavor compounds were identified, including 11 esters, 11 aldehydes, nine alcohols, five ketones, three furans, three acids, two pyrazines, and one ether. The results showed that with the loss of moisture during drying, aldehydes and alcohols decreased, esters initially increased and then decreased. However, propyl acetate, 2,3-butanediol, 2-acetylfuran, and 2-methylpyrazine increased. Moreover, drying temperature was closely related to the change of volatile flavor compounds. Aldehydes, alcohols, and some other volatile flavor compounds (methyl salicylate, ethyl acetate, 2-methylpyrazine, dipropyl disulfide) decreased with an increase of temperature (60-80 °C) at the same moisture content, while high temperature could promote the formation of ethyl octanoate, methyl octanoate, benzaldehyde, furfurol, acetal, 5-methylfurfural, and 2-acetylfuran. Based on principal components analysis and heat map clustering analysis, peppers dried at 70 or 80 °C presented similar composition, and the loss of volatile flavor compounds was more than samples died at 60 °C during the HAD process. CONCLUSION: Overall, the flavor quality of peppers dried at 60 °C was better than that of other treatments during the HAD process. HS-GC-IMS was a reliable and effective means of analyzing volatile flavor compounds in peppers during the drying process. © 2020 Society of Chemical Industry.


Assuntos
Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Piper nigrum/química , Compostos Orgânicos Voláteis/química , Álcoois/química , Dessecação , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Frutas/química , Humanos , Cetonas/química , Paladar , Temperatura , Verduras/química
17.
Molecules ; 24(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443455

RESUMO

The effects of two different processing methods on the volatile components of candied kumquats were investigated via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). The characteristic volatile fingerprints of fresh kumquats (FKs), vacuum sugaring osmosis combined with hot-air drying kumquats (VS-ADKs), and atmospheric pressure sugaring osmosis combined with hot-air drying kumquats (AS-ADKs) were established using 3D topographic plots. From the fingerprints, 40 signal peaks for 22 compounds were confirmed and quantified in all types of kumquats, namely, two terpenes, four esters, seven aldehydes, three ketones, and six alcohols. 3-Pentanone was identified as the major component of FKs; followed by 1-hexanol and the Z-3-hexen-1-ol dimer. The hexanal dimer, 2-hexen-1-ol, and the ethyl acetate dimer were the major markers of VS-ADKs. Benzaldehyde and furfurol were the prominent constituent parts of AS-ADKs. Compared with that in FKs, the pentanal and dimethyl ketone contents of VS-ADKs and AS-ADKs exhibited a dramatic increase (p < 0.05). By contrast, the change in ethanol dimer tended to decrease (p < 0.05). Principal component analysis (PCA) clearly showed that the samples, which were distributed in a separate space could be well-distinguished. Furthermore, the similarity of different processed kumquats and their corresponding volatile components was demonstrated via heat map clustering analysis. The results confirmed the potential of HS-GC-IMS-based approaches to evaluate processed kumquats with various volatile profiles.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Mobilidade Iônica , Rutaceae/química , Compostos Orgânicos Voláteis/análise , Análise por Conglomerados , Análise de Componente Principal
18.
J Food Sci Technol ; 56(9): 4166-4176, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31477988

RESUMO

Whelks Neptunea arthritica cumingi Crosse and Neverita didyma were processed by hot air drying and changes of thei lipids and the mechanism involved were evaluated by analyzing peroxide value, thiobarbituric acid-reactive substances, total oxidation value, fatty acid composition, activities of lipases and lipoxygenase (LOX), as well as contents of triacylglycerol (TAG), free fatty acid (FFA), phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The processing significantly decreased the contents of PC, PE and TAG but increased the content of FFA. The presence of acid lipase and phospholipase in whelk tissues and their activity preservation during processing suggest that the enzymes may help hydrolyze lipids. By contrast, the reduction of PC, PE and TAG was more pronounced than the increase in FFA in whelk tissues upon processing, indicating the oxidative degradation of FFA. LOX may play a role in lipid oxidation due to the stability of the starting components during processing.

19.
Molecules ; 23(7)2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976903

RESUMO

Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.


Assuntos
Anti-Infecciosos/análise , Antioxidantes/análise , Catecóis/análise , Dessecação/métodos , Álcoois Graxos/análise , Zingiber officinale/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Catecóis/farmacologia , Cromatografia Líquida de Alta Pressão , Álcoois Graxos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Guaiacol/análogos & derivados , Guaiacol/análise , Guaiacol/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Óleos de Plantas/análise , Óleos de Plantas/farmacologia
20.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602709

RESUMO

Volatile sulfur compounds gradually develop in Lentinula edodes after hot-air drying, and many genes are involved in the generation of these sulfur compounds. The expression stability of reference genes may vary in a particular experimental treatment when analyzing their expressions by quantitative real-time polymerase chain reaction (qRT-PCR). In this study, the expression profile of 17 candidate genes was assessed in L. edodes under treatment at 50 °C for 0, 1, 2, and 3 h, and the expression stability of each reference gene was analyzed by three statistical algorithms, including geNorm, NormFinder, and BestKeeper. Results indicated that the two optimal reference genes for mycelium and fruiting body were CAC and DAHP as well as CAC and NUP, respectively. Additionally, CAC and DAHP were found to be the two most stable reference genes across the mycelium and fruiting body set. Our results will provide a genetic foundation for further research on the metabolism genes of sulfur compounds in L. edodes.


Assuntos
Dessecação/métodos , Proteínas Fúngicas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Cogumelos Shiitake/genética , Algoritmos , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Temperatura Alta , Padrões de Referência , Análise de Sequência de RNA/métodos , Cogumelos Shiitake/crescimento & desenvolvimento , Compostos de Enxofre , Compostos Orgânicos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA