RESUMO
We report 4 cases of human African trypanosomiasis that occurred in Ethiopia in 2022, thirty years after the last previously reported case in the country. Two of 4 patients died before medicine became available. We identified the infecting parasite as Trypanosoma brucei rhodesiense. Those cases imply human African trypanosomiasis has reemerged.
Assuntos
Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei rhodesiense , Etiópia/epidemiologiaRESUMO
Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.
Assuntos
Benzopiranos , Glucoquinase , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Camundongos , Benzopiranos/farmacologia , Benzopiranos/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Glucoquinase/metabolismo , Glucoquinase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Células NIH 3T3 , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Human African trypanosomiasis (HAT) or sleeping sickness is a protozoan neglected tropical disease, which is the main health worry in more than 20 countries in Africa. A novel approach is presented to predict the antitrypanosomal activity of sesquiterpene lactones (STLs) in terms of biological activity (pIC50). The largest reported data set of pIC50 for Trypanosoma brucei rhodesiense (Tbr) as one form of HAT are used to derive and test the new model. The new model is based on five additive and two non-additive molecular structural parameters in several frameworks where it can be easily applied through a computer code. It is derived and tested based on 125 and 31 experimental data, respectively, with different types of statistical parameters. The high reliability of the novel model is compared with the best available QSAR models, which use "classical" molecular descriptors, and 3D pharmacophore features. The values of R2 (correlation coefficient), root mean squared error (RMSE), and RMSEP (root mean square error of prediction) of the new model are 0.77, 0.38, and 0.35, respectively. Meanwhile, R2, RMSE, and RMSEP of comparative QSAR models based on complex descriptors are in the ranges 0.71-76, 0.46-0.4, and 0.51-0.44, respectively. The predictive results of the novel approach confirm its high simplicity, reliability, precision, accuracy, and goodness-of-fit.
Assuntos
Sesquiterpenos , Tripanossomíase Africana , Animais , Humanos , Estrutura Molecular , Reprodutibilidade dos Testes , Lactonas/farmacologia , Lactonas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Trypanosoma brucei rhodesienseRESUMO
The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.
Assuntos
Leishmania major , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Tetra-Hidrofolato Desidrogenase/metabolismo , Pteridinas/química , Tripanossomíase Africana/tratamento farmacológicoRESUMO
In pursuing novel therapeutic solutions, drug discovery and development rely on efficiently utilising existing knowledge and resources. Repurposing know-how, a strategy that capitalises on previously acquired information and expertise, has emerged as a powerful approach to accelerate drug discovery and development processes, often at a fraction of the costs of de novo developments. For 80 years, collaborating within a network of partnerships, the Swiss Tropical and Public Health Institute (Swiss TPH) has been working along a value chain from innovation to validation and application to combat poverty-related diseases. This article presents an overview of selected know-how repurposing initiatives conducted at Swiss TPH with a particular emphasis on the exploration of drug development pathways in the context of neglected tropical diseases and other infectious diseases of poverty, such as schistosomiasis, malaria and human African trypanosomiasis.
Assuntos
Reposicionamento de Medicamentos , Saúde Pública , Humanos , Desenvolvimento de Medicamentos , Descoberta de Drogas , SuíçaRESUMO
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel's pore-lining region to the C-terminal domain (residues 332-398) and identified a membrane-insertion domain (MID, residues 177-228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368-395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Assuntos
Apolipoproteína L1/metabolismo , Canais Iônicos/química , Zíper de Leucina , Apolipoproteína L1/química , Cátions/metabolismo , Humanos , Conformação Proteica , Domínios ProteicosRESUMO
BACKGROUND: Human African trypanosomiasis (HAT) is one of the world's classical neglected tropical diseases representing a major public health threat in sub-Saharan Africa. Although the parasitic disease is in decline in the Republic of Congo, the better understanding of the epidemiological situation of active foci is required to reduce the risk of disease resurgence which could impede progress registered so far. The aim of this study was to determine the prevalence of HAT and the associated risk factors in individuals living in remote areas of the Republic of Congo. METHODS: A cross-sectional survey was carried out in volunteers living in rural settings from June 2020 to January 2021. Socio-demographic and Clinical parameters of the participants were recorded. The presence of HAT-specific antibodies was assessed in whole blood, and then confirmed in serial diluted plasma samples using Card-Agglutination Trypanosomiasis Test (CATT)/T.b. gambiense CATT. The Capillary Tube Centrifugation (CTC) and Lymph nodes (LN) examination were done for detecting trypanosome parasites in CATT-serum positive cases. The staging of positive participants was determined by cerebrospinal fluid (CSF) examination. RESULTS: Out of 8556 enrolled participants, 48.5% were more than 15 years old, 57.7% were unschooled and 67.2% practiced peasant activities. The prevalence of HAT infection was 0.3% with the predominance of patients at stage 1 of the disease (84.0%). The districts of Mindouli (OR: 25.9 (5.2-468); p = 0.0016) and Mpouya (OR: 13.3 (2.5-246); p = 0.0140) was revealed as the foci of high risk of HAT infection. Several factors were associated with an increased risk of HAT infection mainly including the non-schooling (OR: 5.1 (1.2-21.9); p = 0.0268), the life in couple or married (OR: 3.3 (1.0-11.3); p = 0.0545) and the practice of peasant activities (OR: 6.9 (2.4-29.3); p = 0.0017). CONCLUSION: This study highlights the need of revising and strengthening the strategies of HAT control in Republic of Congo, using an approach which will take into account the education level, the marital status and the occupation of the population at risk.
Assuntos
Tripanossomíase Africana , Animais , Humanos , Adolescente , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei gambiense , Estudos Transversais , Testes de Aglutinação , Fatores de RiscoRESUMO
BACKGROUND: In South Sudan, sleeping sickness is a frequent condition caused by human African trypanosomiasis. There are two stages that are well-known. When the CNS is affected, especially with Trypanosoma gambiense infection, the early hemolymphatic stage and the late encephalitic stage have been observed, including mental, motor, and sensory symptoms. In this case, second-stage African trypanosomiasis manifested itself in an atypical neurological manner. CASE PRESENTATION: A 16-year-old boy from South Sudan referred to Sudan National Centre for Neurological Sciences, Khartoum, Sudan suffering from non-convulsive status epilepticus, mental deterioration and behavioral changes for the last nine months. He was conscious but disorientated. Low hemoglobin concentration, elevated ESR, enlarged spleen and positive card agglutination test for trypanosomiasis was found in this patient. Electro-encephalogram (EEG) found an on-going generalized seizure activity. The patient showed improvement after management with carbamazepine and tonic. CONCLUSION: Our case highlights that late second stage African trypanosomiasis with neurological complications such as non-convulsive status epilepticus should be suspected in any patient who developed progressive cognitive decline and behavioral changes following long standing history of African Trypanosomiasis and routine Electro-encephalogram EEG is the best tool to diagnose non convulsive status epilepticus.
Assuntos
Estado Epiléptico , Tripanossomíase Africana , Adolescente , Animais , Humanos , Masculino , Trypanosoma brucei gambiense , Tripanossomíase Africana/complicações , Tripanossomíase Africana/diagnósticoRESUMO
The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.
Assuntos
Apolipoproteína L1/química , Imunidade Inata , Animais , Apolipoproteína L1/genética , Apolipoproteína L1/imunologia , Sequências Hélice-Alça-Hélice , Humanos , Concentração de Íons de Hidrogênio , Papio hamadryas , Trypanosoma brucei brucei/imunologiaRESUMO
BACKGROUND: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. METHODS: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. RESULTS: In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. CONCLUSIONS: Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease's epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.
Assuntos
Tripanossomíase Africana , Animais , Guiné , Humanos , Estudos Prospectivos , Trypanosoma brucei gambiense , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologiaRESUMO
BACKGROUND: The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s. METHODS: We use mathematical models fitted to longitudinal data to estimate the probability that selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We examine the impact of active screening coverage on the certainty of model estimates for transmission and therefore the role of screening in the measurement of EOT. RESULTS: In 3 example health zones of Sud-Ubangi province, we find there is a moderate (>40%) probability that EOT has been achieved by 2018, based on 2000-2016 data. Budjala and Mbaya reported zero cases during 2017-18, and this further increases our respective estimates to 99.9% and 99.6% (model S) and to 87.3% and 92.1% (model W). Bominenge had recent case reporting, however, that if zero cases were found in 2021, it would substantially raise our certainty that EOT has been met there (99.0% for model S and 88.5% for model W); this could be higher with 50% coverage screening that year (99.1% for model S and 94.0% for model W). CONCLUSIONS: We demonstrate how routine surveillance data coupled with mechanistic modeling can estimate the likelihood that EOT has already been achieved. Such quantitative assessment will become increasingly important for measuring local achievement of EOT as 2030 approaches.
Assuntos
Tripanossomíase Africana , Animais , República Democrática do Congo , Humanos , Programas de Rastreamento , Probabilidade , Trypanosoma brucei gambienseRESUMO
We integrated sleeping sickness case detection into the primary healthcare system in 2 health districts in the Democratic Republic of the Congo. We replaced a less field-friendly serologic test with a rapid diagnostic test, which was followed up by human African trypanosomiasis microscopic testing, and used a mixed costing methodology to estimate costs from a healthcare provider perspective. We screened a total of 18,225 persons and identified 27 new cases. Average financial cost (i.e., actual expenditures) was US $6.70/person screened and $4,464/case diagnosed and treated. Average economic cost (i.e., value of resources foregone that could have been used for other purposes) was $9.40/person screened and $6,138/case diagnosed and treated. Our study shows that integrating sleeping sickness surveillance into the primary healthcare system is feasible and highlights challenges in completing the diagnostic referral process and developing a context-adapted diagnostic algorithm for the large-scale implementation of this strategy in a sustainable and low-cost manner.
Assuntos
Testes Diagnósticos de Rotina , Tripanossomíase Africana , Animais , Atenção à Saúde , República Democrática do Congo/epidemiologia , Pessoal de Saúde , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologiaRESUMO
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24-31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4-20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Quinolonas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/química , Staphylococcus aureus/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacosRESUMO
African trypanosomes cause diseases in humans and livestock. Human African trypanosomiasis is caused by Trypanosoma brucei rhodesiense and T. b. gambiense. Animal trypanosomoses have major effects on livestock production and the economy in developing countries, with disease management depending mainly on chemotherapy. Moreover, only few drugs are available and these have adverse effects on patients, are costly, show poor accessibility, and parasites develop drug resistance to them. Therefore, novel trypanocidal drugs are urgently needed. Here, the effects of synthesized nitrofurantoin analogs were evaluated against six species/strains of animal and human trypanosomes, and the treatment efficacy of the selected compounds was assessed in vivo. Analogs 11 and 12, containing 11- and 12-carbon aliphatic chains, respectively, showed the highest trypanocidal activity (IC50 < 0.34 µM) and the lowest cytotoxicity (IC50 > 246.02 µM) in vitro. Structure-activity relationship analysis suggested that the trypanocidal activity and cytotoxicity were related to the number of carbons in the aliphatic chain and electronegativity. In vivo experiments, involving oral treatment with nitrofurantoin, showed partial efficacy, whereas the selected analogs showed no treatment efficacy. These results indicate that nitrofurantoin analogs with high hydrophilicity are required for in vivo assessment to determine if they are promising leads for developing trypanocidal drugs.
Assuntos
Nitrofuranos/administração & dosagem , Nitrofuranos/síntese química , Nitrofurantoína/análogos & derivados , Tripanossomicidas/administração & dosagem , Tripanossomicidas/síntese química , Tripanossomíase Africana/tratamento farmacológico , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Camundongos , Estrutura Molecular , Nitrofuranos/química , Nitrofuranos/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacosRESUMO
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Tripanossomíase Africana/tratamento farmacológico , Animais , Antiprotozoários/síntese química , Antiprotozoários/classificação , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Descoberta de Drogas , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Leishmania/metabolismo , Leishmaniose/parasitologia , Leishmaniose/transmissão , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei gambiense/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissãoRESUMO
The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease "Nagana" which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.
Assuntos
Antagonistas do Ácido Fólico/química , Lactonas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Descoberta de Drogas , Antagonistas do Ácido Fólico/farmacologia , Lactonas/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/metabolismo , Ligação Proteica , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/metabolismoRESUMO
We report serial magnetic resonance imaging (MRI) findings and follow-up in a case of human African trypanosomiasis (HAT) presenting with limited lesions followed by early and complete resolution. We searched the literature for documented cases and reviewed MRI findings before treatment. A 30-year-old Lebanese man, who had lived in Gabon for six years, presented with a two-year history of rash, anorexia, weight loss, arthralgia, paresthesia, and hypersomnia. Previously, the patient had received corticosteroid therapy for unconfirmed ANCA-associated vasculitis. Physical examination revealed a painless chancre on the left arm located at the site of an old insect bite, enlarged cervical, axillar and inguinal lymph nodes, hepatosplenomegaly and impaired concentration. Blood analysis showed an elevated protein level (90g/L) with hypoalbuminemia (24.2g/L) and elevated IgM (26.4g/L). Bone marrow aspirate and biopsy failed to detect any parasite. Polymerase chain reaction tests on blood and cerebrospinal fluid were positive for Trypanosoma. Serology tests confirmed the diagnosis of HAT due to Trypanosoma brucei gambiense infection. 3T MRI showed lesions in the hypothalamus and basal ganglia, the internal capsule, and the mesencephalon bilaterally. Follow-up MRI showed interval progression of the abnormalities. Treatment with melarsoprol was followed by clinical improvement with regression of the lesions on the three-month MRI, then total resolution at the 10-month follow-up. This case highlights a pattern of mild MRI lesions in T. brucei gambiense HAT with a total and rapid resolution under treatment. The literature review (16 HAT cases with sufficient radiological data, included ours) revealed an MRI pattern of brain lesion distribution that could be helpful for diagnosis and orienting biological tests.
Assuntos
Trypanosoma brucei gambiense , Tripanossomíase Africana , Adulto , Animais , Humanos , Imageamento por Ressonância Magnética , Masculino , Reação em Cadeia da Polimerase , Testes Sorológicos , Tripanossomíase Africana/diagnóstico por imagem , Tripanossomíase Africana/tratamento farmacológicoRESUMO
BACKGROUND: Gambiense human African trypanosomiasis ([gHAT] sleeping sickness) is a vector-borne disease that is typically fatal without treatment. Intensified, mainly medical-based, interventions in endemic areas have reduced the occurrence of gHAT to historically low levels. However, persistent regions, primarily in the Democratic Republic of Congo (DRC), remain a challenge to achieving the World Health Organization's goal of global elimination of transmission (EOT). METHODS: We used stochastic models of gHAT transmission fitted to DRC case data and explored patterns of regional reporting and extinction. The time to EOT at a health zone scale (~100 000 people) and how an absence of reported cases informs about EOT was quantified. RESULTS: Regional epidemiology and level of active screening (AS) both influenced the predicted time to EOT. Different AS cessation criteria had similar expected infection dynamics, and recrudescence of infection was unlikely. However, whether EOT has been achieved when AS ends is critically dependent on the stopping criteria. Two or three consecutive years of no detected cases provided greater confidence of EOT compared with a single year (~66%-75% and ~82%-84% probability of EOT, respectively, compared with 31%-51%). CONCLUSIONS: Multiple years of AS without case detections is a valuable measure to assess the likelihood that the EOT target has been met locally.
Assuntos
Trypanosoma brucei gambiense , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , República Democrática do Congo/epidemiologia , Erradicação de Doenças , Humanos , Modelos Biológicos , Processos Estocásticos , Tripanossomíase Africana/prevenção & controleRESUMO
Suramin is 100 years old and is still being used to treat the first stage of acute human sleeping sickness, caused by Trypanosoma bruceirhodesiense Suramin is a multifunctional molecule with a wide array of potential applications, from parasitic and viral diseases to cancer, snakebite, and autism. Suramin is also an enigmatic molecule: What are its targets? How does it get into cells in the first place? Here, we provide an overview of the many different candidate targets of suramin and discuss its modes of action and routes of cellular uptake. We reason that, once the polypharmacology of suramin is understood at the molecular level, new, more specific, and less toxic molecules can be identified for the numerous potential applications of suramin.
Assuntos
Suramina/uso terapêutico , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Animais , Humanos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologiaRESUMO
A previous publication from our laboratory reported the identification of a new class of 2-(1H-imidazo-2-yl)piperazines as potent T. brucei growth inhibitors as potential treatment for Human African Trypanosomiasis (HAT). This work describes the structure-activity relationship (SAR) around the hit compound 1, which led to the identification of the optimized compound 18, a single digit nanomolar inhibitor (EC50 7 nM), not cytotoxic and with optimal in vivo profile that made it a suitable candidate for efficacy studies in a mouse model mimicking the second stage of disease.