Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 33: 107-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493331

RESUMO

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Imunidade , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Autoimunidade , Diferenciação Celular/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Fenômenos do Sistema Imunitário , Infecções/etiologia , Infecções/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
2.
Cell ; 176(3): 581-596.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661753

RESUMO

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Animais , Sistema Nervoso Central/imunologia , Biologia Computacional/métodos , Encefalomielite Autoimune Experimental/imunologia , Endorribonucleases/metabolismo , Meio Ambiente , Exposição Ambiental/efeitos adversos , Genoma , Genômica , Humanos , Inflamação/metabolismo , Linurona/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores sigma/efeitos dos fármacos , Receptores sigma/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Peixe-Zebra
3.
Cell ; 168(4): 692-706, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28187289

RESUMO

Malignant cells utilize diverse strategies that enable them to thrive under adverse conditions while simultaneously inhibiting the development of anti-tumor immune responses. Hostile microenvironmental conditions within tumor masses, such as nutrient deprivation, oxygen limitation, high metabolic demand, and oxidative stress, disturb the protein-folding capacity of the endoplasmic reticulum (ER), thereby provoking a cellular state of "ER stress." Sustained activation of ER stress sensors endows malignant cells with greater tumorigenic, metastatic, and drug-resistant capacity. Additionally, recent studies have uncovered that ER stress responses further impede the development of protective anti-cancer immunity by manipulating the function of myeloid cells in the tumor microenvironment. Here, we discuss the tumorigenic and immunoregulatory effects of ER stress in cancer, and we explore the concept of targeting ER stress responses to enhance the efficacy of standard chemotherapies and evolving cancer immunotherapies in the clinic.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/imunologia , Neoplasias/patologia , Animais , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Evasão Tumoral , Microambiente Tumoral , Resposta a Proteínas não Dobradas
4.
Mol Cell ; 83(14): 2559-2577.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421942

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.


Assuntos
Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Internalização do Vírus , Humanos , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/fisiologia , Resposta a Proteínas não Dobradas
5.
Mol Cell ; 82(8): 1477-1491, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452616

RESUMO

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Mamíferos , Controle de Qualidade , Transdução de Sinais
6.
EMBO J ; 43(3): 339-361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238476

RESUMO

Hematopoietic stem cell (HSC) divisional fate and function are determined by cellular metabolism, yet the contribution of specific cellular organelles and metabolic pathways to blood maintenance and stress-induced responses in the bone marrow remains poorly understood. The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 (encoded by the Mitol gene) is known to regulate mitochondrial and endoplasmic reticulum (ER) interaction and to promote cell survival. Here, we investigated the functional involvement of MITOL in HSC maintenance by generating MX1-cre inducible Mitol knockout mice. MITOL deletion in the bone marrow resulted in HSC exhaustion and impairment of bone marrow reconstitution capability in vivo. Interestingly, MITOL loss did not induce major mitochondrial dysfunction in hematopoietic stem and progenitor cells. In contrast, MITOL deletion induced prolonged ER stress in HSCs, which triggered cellular apoptosis regulated by IRE1α. In line, dampening of ER stress signaling by IRE1α inihibitor KIRA6 partially rescued apoptosis of long-term-reconstituting HSC. In summary, our observations indicate that MITOL is a principal regulator of hematopoietic homeostasis and protects blood stem cells from cell death through its function in ER stress signaling.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Apoptose , Células-Tronco Hematopoéticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
EMBO J ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232130

RESUMO

Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.

8.
EMBO J ; 42(19): e113118, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37646198

RESUMO

Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.

9.
EMBO Rep ; 25(4): 1792-1813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383861

RESUMO

Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.


Assuntos
Ribonucleases , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Ribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Resposta a Proteínas não Dobradas , Morte Celular
10.
EMBO Rep ; 25(8): 3627-3650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982191

RESUMO

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.


Assuntos
Fusão Celular , Endorribonucleases , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteína 1 de Ligação a X-Box , Animais , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Mioblastos/metabolismo , Mioblastos/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Desenvolvimento Muscular/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Células Satélites de Músculo Esquelético/metabolismo , Regeneração/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Proteínas de Membrana , Proteínas Musculares
11.
Mol Cell ; 69(2): 169-181, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29107536

RESUMO

The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.


Assuntos
Linhagem da Célula/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Homeostase , Humanos , Modelos Biológicos , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Via Secretória/fisiologia , Transdução de Sinais , eIF-2 Quinase/metabolismo
12.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
13.
Dev Biol ; 507: 11-19, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142805

RESUMO

Notch signaling controls numerous key cellular processes including cell fate determination and cell proliferation. Its malfunction has been linked to many developmental abnormalities and human disorders. Overactivation of Notch signaling is shown to be oncogenic. Retention of excess Notch protein in the endoplasmic reticulum (ER) can lead to altered Notch signaling and cell fate, but the mechanism is not well understood. In this study, we show that V5-tagged or untagged exogenous Notch is retained in the ER when overexpressed in fly tissues. Furthermore, we show that Notch retention in the ER leads to robust ER enlargement and elicits a rough eye phenotype. Gain-of-function of unfolded protein response (UPR) factors IRE1 or spliced Xbp1 (Xbp1-s) alleviates Notch accumulation in the ER, restores ER morphology and ameliorates the rough eye phenotype. Our results uncover a pivotal role of the IRE1/Xbp1 axis in regulating the detrimental effect of ER-localized excess Notch protein during development and tissue homeostasis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Homeostase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Resposta a Proteínas não Dobradas
14.
J Biol Chem ; 300(4): 107169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494075

RESUMO

The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.


Assuntos
Endorribonucleases , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Evolução Molecular
15.
J Biol Chem ; 300(3): 105719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311171

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Proteínas de Drosophila , Endorribonucleases , Receptores de Quinase C Ativada , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Drosophila melanogaster , Modelos Animais de Doenças , Endorribonucleases/genética , Endorribonucleases/metabolismo
16.
J Biol Chem ; 300(6): 107394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768813

RESUMO

Periprosthetic osteolysis and subsequent aseptic loosening are the primary causes of failure following total joint arthroplasty. Wear particle-induced osteogenic impairment is recognized as an important contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress emerging as a pivotal underlying mechanism. Hence, searching for potential therapeutic targets and agents capable of modulating ER stress in osteoblasts is crucial for preventing aseptic loosening. Kaempferol (KAE), a natural flavonol compound, has shown promising osteoprotective effects and anti-ER stress properties in diverse diseases. However, the influence of KAE on ER stress-mediated osteogenic impairment induced by wear particles remains unclear. In this study, we observed that KAE effectively relieved TiAl6V4 particles-induced osteolysis by improving osteogenesis in a mouse calvarial model. Furthermore, we demonstrated that KAE could attenuate ER stress-mediated apoptosis in osteoblasts exposed to TiAl6V4 particles, both in vitro and in vivo. Mechanistically, our results revealed that KAE mitigated ER stress-mediated apoptosis by upregulating the IRE1α-XBP1s pathway while concurrently partially inhibiting the IRE1α-regulated RIDD and JNK activation. Collectively, our findings suggest that KAE is a prospective therapeutic agent for treating wear particle-induced osteolysis and highlight the IRE1α-XBP1s pathway as a potential therapeutic target for preventing aseptic loosening.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Quempferóis , Osteoblastos , Osteogênese , Osteólise , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Quempferóis/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Camundongos , Osteogênese/efeitos dos fármacos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteólise/metabolismo , Osteólise/induzido quimicamente , Osteólise/patologia , Osteólise/tratamento farmacológico , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL
17.
Genes Cells ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138929

RESUMO

Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.

18.
EMBO Rep ; 24(12): e57228, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818824

RESUMO

Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Ribossomos Mitocondriais , Humanos , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Sobrevivência Celular , Tetraciclinas/farmacologia , Tetraciclinas/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Doenças Mitocondriais/genética
19.
Mol Cell ; 67(4): 673-684.e8, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28689662

RESUMO

The unfolded protein response (UPR) is a conserved homeostatic program that is activated by misfolded proteins in the lumen of the endoplasmic reticulum (ER). Recently, it became evident that aberrant lipid compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent in activating the UPR. The underlying molecular mechanism, however, remained unclear. We show that the most conserved transducer of ER stress, Ire1, uses an amphipathic helix (AH) to sense membrane aberrancies and control UPR activity. In vivo and in vitro experiments, together with molecular dynamics (MD) simulations, identify the physicochemical properties of the membrane environment that control Ire1 oligomerization. This work establishes the molecular mechanism of UPR activation by lipid bilayer stress.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo
20.
J Infect Dis ; 229(1): 237-244, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37499184

RESUMO

The unfolded protein response (UPR) is an evolutionarily conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen during bacterial infection. The IRE-1/XBP-1 pathway is a major branch of the UPRER that has been conserved from yeast to human. Dioscin, a steroidal saponin exhibits a broad spectrum of properties. However, whether dioscin influences the immune response and the underlying molecular mechanisms remain obscure. We find that dioscin increases resistance to Gram-negative pathogen Pseudomonas aeruginosa. Furthermore, dioscin also inhibits the growth of pathogenic bacteria. Meanwhile, dioscin enhances the resistance to pathogens by reducing bacterial burden in the intestine. Through genetic screening, we find that dioscin activates the UPRER to promote innate immunity via IRE-1/XBP-1 pathway. Intriguingly, dioscin requires the neural XBP-1 for immune response. Our findings suggest that dioscin may be a viable candidate for the treatment of infectious diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Diosgenina/análogos & derivados , Animais , Humanos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Imunidade Inata , Bactérias , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA