Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 721: 150126, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38776832

RESUMO

Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Bloqueadores dos Canais de Sódio , Humanos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Animais , Ratos , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Bloqueadores dos Canais de Sódio/farmacologia , Células HEK293 , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/citologia
3.
Schmerz ; 33(5): 475-490, 2019 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-31485751

RESUMO

Erythromelalgia is a rare disease that is associated with hemato-oncological diseases or after taking certain drugs and toxins, but it can also occur as an independent clinical picture, for example, due to mutations in the sodium channel NaV1.7. Clinically, there is a characteristic triad of attack-like burning pain and skin redness in the area of the distal extremities, which can be alleviated by excessive cooling. The attacks are triggered by heat, exertion, and stress. The diagnosis is primarily made clinically and can be confirmed by genetic testing if a sodium channel NaV1.7 mutation is present. Important differential diagnoses are complex regional pain syndrome, the non-freezing cold injury, and small fiber neuropathies. Therapy is multidisciplinary and has to be planned individually and include physical therapy and psychotherapy as well as drug therapy as integral components.


Assuntos
Eritromelalgia , Dor , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/patologia , Eritromelalgia/terapia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/etiologia , Pele/patologia
5.
Pain Physician ; 26(3): E213-E222, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192244

RESUMO

BACKGROUND: Clinically, neuropathic pain is a severe side effect of oxaliplatin chemotherapy, which usually leads to dose reduction or cessation of treatment. Due to the unawareness of detailed mechanisms of oxaliplatin-induced neuropathic pain, it is difficult to develop an effective therapy and limits its clinical use. OBJECTIVES: The aim of the present study was to identify the role of sirtuin 1 (SIRT1) reduction in epigenetic regulation of the expression of voltage-gated sodium channels 1.7 (Nav1.7) in the dorsal root ganglion (DRG) during oxaliplatin-induced neuropathic pain. STUDY DESIGN: Controlled animal study. SETTING: University laboratory. METHODS: The von Frey test was performed to evaluate pain behavior in rats. Real-time quantitative polymerase chain reaction, western blotting, electrophysiological recording, chromatin immunoprecipitation, and small interfering RNA (siRNA) were used to illustrate the mechanisms. RESULTS: In the present study, we found that both the activity and expression of SIRT1 were significantly decreased in rat DRG following oxaliplatin treatment. The activator of SIRT1, resveratrol, not only increased the activity and expression of SIRT1, but also attenuated the mechanical allodynia following oxaliplatin treatment. In addition, local knockdown of SIRT1 by intrathecal injection of SIRT1 siRNA caused mechanical allodynia in naive rats. Besides, oxaliplatin treatment enhanced the action potential firing frequency of DRG neurons and the expression of Nav1.7 in DRG and activation of SIRT1 by resveratrol reversed this effect. Furthermore, blocking Nav1.7 by ProTx II (a selective Nav1.7 channel blocker) reversed oxaliplatin-induced mechanical allodynia. In addition, histone H3 hyperacetylation at the Nav1.7 promoter in DRG of rats following oxaliplatin treatment was significantly suppressed by activation of SIRT1 with resveratrol. Moreover, both the expression of Nav1.7 and histone H3 acetylation at the Nav1.7 promoter were upregulated in the DRG by local knockdown of SIRT1 with SIRT1 siRNA in naive rats. LIMITATIONS: More underlying mechanism(s) of SIRT1 reduction after oxaliplatin treatment needs to be explored in future research. CONCLUSIONS: These findings suggest that reduction of SIRT1-mediated epigenetic upregulation of Nav1.7 in the DRG contributes to the development of oxaliplatin-induced neuropathic pain in rats. The intrathecal drug delivery treatment of activating SIRT1 might be a novel therapeutic option for oxaliplatin-induced neuropathic pain.


Assuntos
Neuralgia , Sirtuína 1 , Ratos , Animais , Oxaliplatina/efeitos adversos , Oxaliplatina/metabolismo , Regulação para Cima , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Ratos Sprague-Dawley , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Epigênese Genética , Resveratrol/efeitos adversos , Resveratrol/metabolismo , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , RNA Interferente Pequeno/metabolismo
6.
Neurobiol Pain ; 11: 100082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024498

RESUMO

Treatment with anti-neoplastic agents can lead to the development of chemotherapy induced peripheral neuropathy (CIPN), which is long lasting and often refractory to treatment. This neuropathic pain develops along dermatomes innervated by peripheral nerves with cell bodies located in the dorsal root ganglia (DRG). The voltage-gated sodium channel NaV1.7 is expressed at high levels in peripheral nerve tissues and has been implicated in the development of CIPN. Efforts to develop novel analgesics directly inhibiting NaV1.7 have been unsuccessful, and our group has pioneered an alternative approach based on indirect modulation of channel trafficking by the accessory protein collapsin response mediator protein 2 (CRMP2). We have recently reported a small molecule, compound 194, that inhibits CRMP2 SUMOylation by the E2 SUMO-conjugating enzyme Ubc9 (Cai et al. , Sci. Transl. Med. 2021 13(6 1 9):eabh1314). Compound 194 is a potent and selective inhibitor of NaV1.7 currents in DRG neurons and reverses mechanical allodynia in models of surgical, inflammatory, and neuropathic pain, including spared nerve injury and paclitaxelinduced peripheral neuropathy. Here we report that, in addition to its reported effects in rats, 194 also reduces mechanical allodynia in male CD-1 mice treated with platinumcomplex agent oxaliplatin. Importantly, treatment with 194 prevented the development of mechanical allodynia when co-administered with oxaliplatin. No effects were observed on the body weight of animals treated with oxaliplatin or 194 throughout the study period. These findings support the notion that 194 is a robust inhibitor of CIPN that reduces established neuropathic pain and prevents the emergence of neuropathic pain during treatment with multiple anti-neoplastic agents in both mice and rats.

7.
Neuropharmacology ; 101: 179-87, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26386152

RESUMO

Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 µM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antitussígenos/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Butilaminas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Análise de Variância , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Estimulação Elétrica , Camundongos , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Sódio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA