Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3209-3225.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931083

RESUMO

Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.


Assuntos
Peroxissomos , Receptores Citoplasmáticos e Nucleares , Proteínas de Transporte/metabolismo , Humanos , Ligases/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/química , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina/metabolismo
2.
Immunity ; 47(1): 93-106.e7, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723556

RESUMO

The innate immune response is critical for animal homeostasis and is conserved from invertebrates to vertebrates. This response depends on specialized cells that recognize, internalize, and destroy microbial invaders through phagocytosis. This is coupled to autonomous or non-autonomous cellular signaling via reactive oxygen species (ROS) and cytokine production. Lipids are known signaling factors in this process, as the acute phase response of macrophages is accompanied by systemic lipid changes that help resolve inflammation. We found that peroxisomes, membrane-enclosed organelles central to lipid metabolism and ROS turnover, were necessary for the engulfment of bacteria by Drosophila and mouse macrophages. Peroxisomes were also required for resolution of bacterial infection through canonical innate immune signaling. Reduced peroxisome function impaired the turnover of the oxidative burst necessary to fight infection. This impaired response to bacterial challenge affected cell and organism survival and revealed a previously unknown requirement for peroxisomes in phagocytosis and innate immunity.


Assuntos
Macrófagos/imunologia , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Citocinas/metabolismo , Drosophila melanogaster , Imunidade Inata , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Explosão Respiratória , Transdução de Sinais
3.
Cell Mol Life Sci ; 80(3): 69, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821008

RESUMO

Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.


Assuntos
Jejum , Mitocôndrias , Receptor 1 de Sinal de Orientação para Peroxissomos , Peixe-Zebra , Animais , Humanos , Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo
4.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675653

RESUMO

Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 µM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.


Assuntos
Ensaios de Triagem em Larga Escala , Leishmania donovani , Simulação de Acoplamento Molecular , Receptor 1 de Sinal de Orientação para Peroxissomos , Proteínas de Protozoários , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Polarização de Fluorescência/métodos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Humanos
5.
Biol Chem ; 404(2-3): 157-167, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36260915

RESUMO

The assembly of the peroxisomal translocon involves the transition of a soluble form of the peroxisomal targeting receptor PEX5 into a membrane-bound form, which becomes an integral membrane component of the import pore for peroxisomal matrix proteins. How this transition occurs is still a mystery. We addressed this question using a artificial horizontal bilayer in combination with fluorescence time-correlated single photon counting (TCSPC) and electrophysiological channel recording. Purified human isoform PEX5L and truncated PEX5L(1-335) lacking the cargo binding domain were selectively labeled with thiol-reactive Atto-dyes. Diffusion coefficients of labeled protein in solution show that PEX5L is monomeric with a rather compact spherical conformation, while the truncated protein appeared in a more extended conformation. Labeled PEX5L and the truncated PEX5L(1-335) bind stably to horizontal bilayer thereby accumulating around 100-fold. The diffusion coefficients of the membrane-bound PEX5L forms are 3-4 times lower than in solution, indicating the formation of larger complexes. Electrophysiological single channel recording shows that membrane-bound labeled and non-labeled PEX5L, but not the truncated PEX5L(1-335), can form ion conducting membrane channels. The data suggest that PEX5L is the pore-forming component of the oligomeric peroxisomal translocon and that spontaneous PEX5L membrane surface binding might be an important step in its assembly.


Assuntos
Bicamadas Lipídicas , Peroxissomos , Humanos , Bicamadas Lipídicas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Isoformas de Proteínas/metabolismo , Canais Iônicos/metabolismo , Transporte Proteico
6.
Biol Chem ; 404(2-3): 121-133, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36279206

RESUMO

Accurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast Saccharomyces cerevisiae, peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins. However, what defines this substrate selectivity remains uncovered. Here, we used unbiased screens alongside directed experiments to identify the properties underlying Pex9 targeting specificity. We find that the specificity of Pex9 is largely determined by the hydrophobic nature of the amino acid preceding the PTS1 tripeptide of its cargos. This is explained by structural modeling of the PTS1-binding cavities of the two factors showing differences in their surface hydrophobicity. Our work outlines the mechanism by which targeting specificity is achieved, enabling dynamic rewiring of the peroxisomal proteome in changing metabolic needs.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxissomos/metabolismo
7.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36122347

RESUMO

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Assuntos
Peroxissomos , Receptores Citoplasmáticos e Nucleares , Humanos , Fosforilação , Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Proteico
8.
J Cell Sci ; 133(24)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33177075

RESUMO

Eukaryotic cells have evolved organelles that allow the compartmentalization and regulation of metabolic processes. Knowledge of molecular mechanisms that allow temporal and spatial organization of enzymes within organelles is therefore crucial for understanding eukaryotic metabolism. Here, we show that the yeast malate dehydrogenase 2 (Mdh2) is dually localized to the cytosol and to peroxisomes and is targeted to peroxisomes via association with Mdh3 and a Pex5-dependent piggybacking mechanism. This dual localization of Mdh2 contributes to our understanding of the glyoxylate cycle and provides a new perspective on compartmentalization of cellular metabolism, which is critical for the perception of metabolic disorders and aging.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sequência de Aminoácidos , Citosol/metabolismo , Glioxilatos , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell Neurosci ; 107: 103536, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777345

RESUMO

Peroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C. elegans models and found that it is reduced in aging, it is unclear if PEX5, a mammalian peroxisomal protein that plays a role in peroxisomal homeostasis and degradation, is affected in the aging brain. To answer this question, we first determined the amount of PEX5, in brain homogenates from young (3 months) and aged (26 through 32+ months of age) wild-type mice of both sexes. PEX5 protein was decreased in aged male brains, but this reduction was not significant in female brains. RNAScope and real-time qPCR analyses showed that Pex5 mRNA was also reduced in aged male brain cortices, but not in females. Immunohistochemistry assays of cortical neurons in young and aged male brains showed that the amount of neuronal PEX5 was reduced in aged male brains. Cortical neurons in aged female mice also had reduced PEX5 levels in comparison to younger female mice. In conclusion, total PEX5 levels and Pex5 gene expression both decrease with age in male brains, and neuronal PEX5 levels lower in an age-dependent manner in the cortices of animals of both sexes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Animais , Citosol/metabolismo , Feminino , Masculino , Camundongos , Peroxissomos/genética , Transporte Proteico/genética , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação
10.
Pflugers Arch ; 472(12): 1733-1742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095298

RESUMO

The hyperpolarization-activated cation current If is a key determinant for cardiac pacemaker activity. It is conducted by subunits of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family, of which HCN4 is predominant in mammalian heart. Both loss-of-function and gain-of-function mutations of the HCN4 gene are associated with sinus node dysfunction in humans; however, their functional impact is not fully understood yet. Here, we sought to characterize a HCN4 V759I variant detected in a patient with a family history of sick sinus syndrome. The genomic analysis yielded a mono-allelic HCN4 V759I variant in a 49-year-old woman presenting with a family history of sick sinus syndrome. This HCN4 variant was previously classified as putatively pathogenic because genetically linked to sudden infant death syndrome and malignant epilepsy. However, detailed electrophysiological and cell biological characterization of HCN4 V759I in Xenopus laevis oocytes and embryonic rat cardiomyocytes, respectively, did not reveal any obvious abnormality. Voltage dependence and kinetics of mutant channel activation, modulation of cAMP-gating by the neuronal HCN channel auxiliary subunit PEX5R, and cell surface expression were indistinguishable from wild-type HCN4. In good agreement, the clinically likewise affected mother of the patient does not exhibit the reported HCN4 variance. HCN4 V759I resembles an innocuous genetic HCN channel variant, which is not sufficient to disturb cardiac pacemaking. Once more, our work emphasizes the importance of careful functional interpretation of genetic findings not only in the context of hereditary cardiac arrhythmias.


Assuntos
Bradicardia/genética , Frequência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Canais de Potássio/genética , Potenciais de Ação , Animais , Bradicardia/diagnóstico , Bradicardia/fisiopatologia , Células Cultivadas , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Xenopus
11.
J Biol Chem ; 293(29): 11553-11563, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29884772

RESUMO

PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Mapas de Interação de Proteínas , Humanos , Modelos Moleculares , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Peroxissomos/metabolismo , Transporte Proteico , Desdobramento de Proteína , Ubiquitina/metabolismo , Ubiquitinação
12.
Bioessays ; 39(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28787099

RESUMO

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.


Assuntos
Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Animais , Humanos , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
13.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652724

RESUMO

In contrast to many protein translocases that use ATP or GTP hydrolysis as the driving force to transport proteins across biological membranes, the peroxisomal matrix protein import machinery relies on a regulated self-assembly mechanism for this purpose and uses ATP hydrolysis only to reset its components. The ATP-dependent protein complex in charge of resetting this machinery-the Receptor Export Module (REM)-comprises two members of the "ATPases Associated with diverse cellular Activities" (AAA+) family, PEX1 and PEX6, and a membrane protein that anchors the ATPases to the organelle membrane. In recent years, a large amount of data on the structure/function of the REM complex has become available. Here, we discuss the main findings and their mechanistic implications.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Animais , Humanos , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Transporte Proteico
14.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533369

RESUMO

Single nucleotide variants (SNVs) resulting in amino acid substitutions (i.e., missense variants) can affect protein localization by changing or creating new targeting signals. Here, we studied the potential of naturally occurring SNVs from the Genome Aggregation Database (gnomAD) to result in the loss of an existing peroxisomal targeting signal 1 (PTS1) or gain of a novel PTS1 leading to mistargeting of cytosolic proteins to peroxisomes. Filtering down from 32,985 SNVs resulting in missense mutations within the C-terminal tripeptide of 23,064 human proteins, based on gene annotation data and computational prediction, we selected six SNVs for experimental testing of loss of function (LoF) of the PTS1 motif and five SNVs in cytosolic proteins for gain in PTS1-mediated peroxisome import (GoF). Experimental verification by immunofluorescence microscopy for subcellular localization and FRET affinity measurements for interaction with the receptor PEX5 demonstrated that five of the six predicted LoF SNVs resulted in loss of the PTS1 motif while three of five predicted GoF SNVs resulted in de novo PTS1 generation. Overall, we showed that a complementary approach incorporating bioinformatics methods and experimental testing was successful in identifying SNVs capable of altering peroxisome protein import, which may have implications in human disease.


Assuntos
Mutação com Ganho de Função , Predisposição Genética para Doença , Mutação com Perda de Função , Mutação de Sentido Incorreto , Peroxissomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Humanos , Peptídeos/química , Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Relação Estrutura-Atividade
15.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1833-1843, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760655

RESUMO

Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H2O2-mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin.


Assuntos
Catalase/metabolismo , Estresse Oxidativo/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Transporte Proteico/genética , Sequência de Aminoácidos/genética , Catalase/genética , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Peróxido de Hidrogênio/química , Mutação , Oxirredução/efeitos dos fármacos , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/química , Peroxissomos/genética , Peroxissomos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética
16.
J Biol Chem ; 292(37): 15287-15300, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765278

RESUMO

A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Transporte Biológico , Endopeptidase K/metabolismo , Deleção de Genes , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Solubilidade
17.
J Cell Sci ; 129(21): 4057-4066, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27678487

RESUMO

Peroxisomal proteins carrying a type 1 peroxisomal targeting signal (PTS1) are recognized by the well-conserved cycling import receptor Pex5p. The yeast YMR018W gene encodes a Pex5p paralog and newly identified peroxin that is involved in peroxisomal import of a subset of matrix proteins. The new peroxin was designated Pex9p, and it interacts with the docking protein Pex14p and a subclass of PTS1-containing peroxisomal matrix enzymes. Unlike Pex5p, Pex9p is not expressed in glucose- or ethanol-grown cells, but it is strongly induced by oleate. Under these conditions, Pex9p acts as a cytosolic and membrane-bound peroxisome import receptor for both malate synthase isoenzymes, Mls1p and Mls2p. The inducible Pex9p-dependent import pathway provides a mechanism for the oleate-inducible peroxisomal targeting of malate synthases. The existence of two distinct PTS1 receptors, in addition to two PTS2-dependent import routes, contributes to the adaptive metabolic capacity of peroxisomes in response to environmental changes and underlines the role of peroxisomes as multi-purpose organelles. The identification of different import routes into peroxisomes contributes to the molecular understanding of how regulated protein targeting can alter the function of organelles according to cellular needs.


Assuntos
Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Malato Sintase/metabolismo , Modelos Biológicos , Ácido Oleico/farmacologia , Peroxissomos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Sinais Direcionadores de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Homologia Estrutural de Proteína , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
18.
Biochem Biophys Res Commun ; 501(3): 696-702, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29753736

RESUMO

Peroxisomes are dynamic and multifunctional organelles involved in various cellular metabolic processes, and their numbers are tightly regulated by pexophagy, a selective degradation of peroxisomes through autophagy to maintain peroxisome homeostasis in cells. Catalase, a major peroxisome protein, plays a critical role in removing peroxisome-generated reactive oxygen species (ROS) produced by peroxisome enzymes, but the contribution of catalase to pexophagy has not been reported. Here, we investigated the role of catalase in peroxisome degradation during nutrient deprivation. Both short interfering RNA-mediated silencing of catalase and pharmacological inhibition by 3-aminotriazole (3AT) decreased the number of peroxisomes and resulted in the downregulation of peroxisomal proteins, such as PMP70 and PEX14 under serum starvation. In addition, treatment with 3AT induced NBR1-dependent autophagy and PEX5 ubiquitination in the absence of serum, which was accompanied by accumulation of ROS. Co-treatment with antioxidant agent N-acetyl-l-cysteine (NAC) prevented ROS accumulation and pexophagy by modulating peroxisome protein levels and the association of NBR1, a pexophagy receptor with peroxisomes. Taken together, these findings demonstrate that catalase plays an important role in pexophagy during nutrient deprivation.


Assuntos
Catalase/metabolismo , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Soro/metabolismo , Autofagia , Catalase/antagonistas & inibidores , Linhagem Celular , Células Hep G2 , Humanos , Ubiquitinação
19.
Curr Genet ; 64(6): 1335-1348, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29869688

RESUMO

Peroxisomes are important organelles that have diverse metabolic functions and participate in the pathogenicity of fungal pathogens. Previous studies indicate that most functions of peroxisomes are dependent on peroxisomal matrix proteins, which are delivered from the cytoplasm into peroxisomes by peroxisomal protein importers. In this study, the roles of peroxisomal protein importer AflPex5 were investigated in Aspergillus flavus with the application of gene disruption. AflPex5 deletion mutants failed to localize the fluorescently fused peroxisomal targeting signal 1 (PTS1) proteins to peroxisomes. Deletion of AflPex5 caused defects in sporulation, sclerotial formation, aflatoxin biosynthesis, stress response, and plant infection. Moreover, AflPex5 null mutants exhibited a significant defect in carbon metabolism and oxidants' clearance. These results indicate that the PTS1 pathway mediated by AflPex5 serves as an important role in the development, metabolism, and pathogenesis of A. flavus.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Aflatoxinas/biossíntese , Aflatoxinas/genética , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Deleção de Genes , Receptor 1 de Sinal de Orientação para Peroxissomos/genética
20.
J Biol Chem ; 291(5): 2460-8, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26567336

RESUMO

Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Biotina/química , Biotinilação , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Helianthus , Malato Desidrogenase/metabolismo , Peptídeo Hidrolases/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA