Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2215533120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276404

RESUMO

Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as "lineage functional types" or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.


Assuntos
Biodiversidade , Plantas , Filogenia , Reprodutibilidade dos Testes , Plantas/genética , Evolução Biológica
2.
Plant J ; 114(5): 1164-1177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891808

RESUMO

Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.


Assuntos
Herbivoria , Micorrizas , Animais , Herbivoria/fisiologia , Insetos/fisiologia , Plantas/metabolismo , Rizosfera
3.
Planta ; 260(1): 15, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829528

RESUMO

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Assuntos
Flores , Odorantes , Pólen , Polinização , Solanum , Solanum/fisiologia , Solanum/química , Polinização/fisiologia , Flores/fisiologia , Flores/química , Pólen/fisiologia , Pólen/química , Odorantes/análise , Animais , Abelhas/fisiologia
4.
New Phytol ; 241(5): 2275-2286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327027

RESUMO

Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.


Assuntos
Hexanóis , Nematoides , Vírus de Plantas , Animais , Solo , Vírus de Plantas/genética
5.
New Phytol ; 242(1): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375897

RESUMO

Serotiny is an adaptive trait that allows certain woody plants to persist in stand-replacing fire regimes. However, the mechanisms by which serotinous cones avoid seed necrosis and nonserotinous species persist in landscapes with short fire cycles and serotinous competitors remain poorly understood. To investigate whether ovulate cone traits that enhance seed survival differ between serotinous and nonserotinous species, we examined cone traits in 24 species within Pinaceae and Cupressaceae based on physical measurements and cone heating simulations using a computational fluid dynamics model. Fire-relevant cone traits were largely similar between cone types; those that differed (e.g. density and moisture) conferred little seed survival advantage under simulated fire. The most important traits influencing seed survival were cone size and seed depth within the cone, which was found to be an allometric function of cone mass for both cone types. Thus, nonserotinous cones should not suffer significantly greater seed necrosis than serotinous cones of equal size. Closed nonserotinous cones containing mature seeds may achieve substantial regeneration after fire if they are sufficiently large relative to fire duration and temperature. To our knowledge, this is the most comprehensive study of the effects of fire-relevant cone traits on conifer regeneration supported by physics-based fire simulation.


Assuntos
Incêndios , Traqueófitas , Sementes , Fenótipo , Necrose
6.
Int J Phytoremediation ; 26(9): 1439-1452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494751

RESUMO

Heavy metal pollution threatens food security by accumulating in crops and soils, posing a significant challenge to modern agriculture due to its high toxicity. Urgent action is needed to restore affected agricultural fields. An efficient way to remove toxins is by bioremediation, which uses microorganisms. With the purpose of restoring soil in agriculture, this research attempts to assemble a consortium of microorganisms isolated from techno-genic soil. A number of promising strains, including Pseudomonas putida, Pantoea sp., Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens were chosen based on their capacity to eliminate heavy metals from tests. Heavy metal removal (Cd, Hg, As, Pb, and Ni) and phytohormone production have been shown to be effective using consortiums (Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens in a 1:1:2). In instances with mixed heavy-metal contamination, aeruginosa demonstrated efficacy because of its notable ability to absorb substantial quantities of heavy metals. The capacity of the cooperation to improve phytoremediation was investigated, with an emphasis on soil cleanup in agricultural areas. When combined with Sorghum bicolor L., it was able to remove roughly 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb from the soil.


Revolutionizing soil restoration, harnessing microbial consortia for effective heavy metal remediation, consortium D's remarkable capacity to combat mixed heavy metal contamination, and elevating phytoremediation potential by 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb removal are promising steps toward sustainable agriculture and enhanced food security.


Assuntos
Biodegradação Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Sorghum , Solo/química , Produtos Agrícolas
7.
New Phytol ; 238(3): 1305-1317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444527

RESUMO

The architecture of root systems is an important driver of plant fitness, competition and ecosystem processes. However, the methodological difficulty of mapping roots hampers the study of these processes. Existing approaches to match individual plants to belowground samples are low throughput and species specific. Here, we developed a scalable sequencing-based method to map the root systems of individual trees across multiple species. We successfully applied it to a tropical dry forest community in the Brazilian Caatinga containing 14 species. We sequenced all 42 individual shrubs and trees in a 14 × 14 m plot using double-digest restriction site-associated sequencing (ddRADseq). We identified species-specific markers and individual-specific haplotypes from the data. We matched these markers to the ddRADseq data from 100 mixed root samples from across the centre (10 × 10 m) of the plot at four different depths using a newly developed R package. We identified individual root samples for all species and all but one individual. There was a strong significant correlation between belowground and aboveground size measurements, and we also detected significant species-level root-depth preference for two species. The method is more scalable and less labour intensive than the current techniques and is broadly applicable to ecology, forestry and agricultural biology.


Assuntos
Ecossistema , Árvores , Árvores/genética , Genótipo , Florestas , Agricultura Florestal , Plantas , Raízes de Plantas
8.
Int J Biometeorol ; 67(6): 1125-1139, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37154946

RESUMO

High-altitude environments are highly susceptible to the effects of climate change. Thus, it is crucial to examine and understand the behaviour of specific plant traits along altitudinal gradients, which offer a real-life laboratory for analysing future impacts of climate change. The available information on how pollen production varies at different altitudes in mountainous areas is limited. In this study, we investigated pollen production of 17 birch (Betula pubescens Ehrh.) individuals along an altitudinal gradient in the European Alps. We sampled catkins at nine locations in the years 2020-2021 and monitored air temperatures. We investigated how birch pollen, flowers and inflorescences are produced in relation to thermal factors at various elevations. We found that mean pollen production of Betula pubescens Ehrh. varied between 0.4 and 8.3 million pollen grains per catkin. We did not observe any significant relationships between the studied reproductive metrics and altitude. However, minimum temperature of the previous summer was found to be significantly correlated to pollen (rs = 0.504, p = 0.039), flower (rs = 0.613, p = 0.009) and catkin (rs = 0.642, p = 0.005) production per volume unit of crown. Therefore, we suggest that temperature variability even at such small scales is very important for studying the response related to pollen production.


Assuntos
Betula , Pólen , Humanos , Betula/fisiologia , Alérgenos , Meio Ambiente
9.
Ecol Lett ; 25(5): 1277-1289, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35152528

RESUMO

All organisms must simultaneously tolerate the environment and access limiting resources if they are to persist. Approaches to understanding abiotic filtering and competitive interactions have generally been developed independently. Consequently, integrating those factors to predict species abundances and community structure remains an unresolved challenge. We introduce a new synthetic framework that models both abiotic filtering and competition by using functional traits. First, our framework estimates species carrying capacities along abiotic gradients. Second, it estimates pairwise competitive interactions as a function of species trait differences. Applied to the study of a complex wetland community, our combined approach more than doubles the explained variance of species abundances compared to a model of abiotic tolerances alone. Trait-based integration of competitive interactions and abiotic filtering improves our ability to predict species abundances, bringing us closer to more accurate predictions of biodiversity structure in a changing world.


Assuntos
Biodiversidade , Ecossistema , Fenótipo
10.
Ann Bot ; 130(2): 231-243, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35849070

RESUMO

BACKGROUND AND AIMS: The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis. METHODS: In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium). KEY RESULTS: As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD. CONCLUSIONS: Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy.


Assuntos
Domesticação , Gossypium , Gossypium/genética , Fotossíntese , Folhas de Planta/genética , Plantas
11.
Environ Monit Assess ; 194(3): 169, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35146574

RESUMO

Identifying the consequences of global warming on the potential distribution of plant taxa with high species diversity or a high proportion of endemic species is one of the critical steps in conservation biology. Here, present and future spatial distribution patterns of 20 Allium endemic species were predicted in Iran. In this regard, the maximum entropy model (MaxEnt) and seven environmental factors were applied. In addition, optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios of 2050 and 2080 were also considered to predict the future spatial distributions. The results showed that annual mean temperature (BIO1), temperature annual range (P5-P6) (BIO7), soil organic carbon content, annual precipitation (BIO12), and depth of soil were the most important environmental variables affecting the distributions of the studied taxa. In total, the model predictions under the future scenarios represented that the suitable habitats for all Allium species endemic to Zagros except for A. saralicum and A. esfahanicum are most probably increased. In contrast, the suitable habitats for all species in Azerbaijan Plateau, Kopet Dagh-Khorassan region, and Alborz except for A. derderianum are most likely decreased under the future climate conditions. The present study indicates that the habitats of Alborz, Azarbaijan, and Kopet Dagh-Khorassan will be probably very fragile and vulnerable to climate change and most species will respond strongly negatively under applied scenarios, while Zagros species occupy new habitats by expanding their distributions. Therefore, determining conservation strategies for the species in these regions seems to be very important and high priority for decision makers.


Assuntos
Allium , Mudança Climática , Carbono , Ecossistema , Monitoramento Ambiental , Irã (Geográfico) , Solo
12.
Am Nat ; 197(2): 236-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523785

RESUMO

AbstractThe interaction between fruit chemistry and the physiological traits of frugivores is expected to shape the structure of mutualistic seed dispersal networks, but it has been understudied compared with the role of morphological trait matching in structuring interaction patterns. For instance, highly frugivorous birds (i.e., birds that have fruits as the main component of their diets), which characteristically have fast gut passage times, are expected to avoid feeding on lipid-rich fruits because of the long gut retention times associated with lipid digestion. Here, we compiled data from 84 studies conducted in the Neotropics that used focal plant methods to record 35,815 feeding visits made by 317 bird species (155 genera in 28 families) to 165 plant species (82 genera in 48 families). We investigated the relationship between the degree of frugivory of birds (i.e., how much of their diet is composed of fruit) at the genus level and their visits to plant genera that vary in fruit lipid content. We used a hierarchical modeling of species communities approach that accounted for the effects of differences in body size, bird and plant phylogeny, and spatial location of study sites. We found that birds with a low degree of frugivory (e.g., predominantly insectivores) tend to have the highest increase in visitation rates as fruits become more lipid rich, while birds that are more frugivorous tend to increase visits at a lower rate or even decrease visitation rates as lipids increase in fruits. This balance between degree of frugivory and visitation rates to lipid-poor and lipid-rich fruits provides a mechanism to explain specialized dispersal systems and the occurrence of certain physiological nutritional filters, ultimately helping us to understand community-wide interaction patterns between birds and plants.


Assuntos
Aves/fisiologia , Preferências Alimentares , Frutas/química , Animais , Comportamento Animal , Tamanho Corporal , Dieta/veterinária , Comportamento Alimentar , Herbivoria , Lipídeos/análise , Magnoliopsida/química , Dispersão de Sementes/fisiologia , Simbiose
13.
Proc Biol Sci ; 288(1944): 20202597, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33563121

RESUMO

The need for open, reproducible science is of growing concern in the twenty-first century, with multiple initiatives like the widely supported FAIR principles advocating for data to be Findable, Accessible, Interoperable and Reusable. Plant ecological and evolutionary studies are not exempt from the need to ensure that the data upon which their findings are based are accessible and allow for replication in accordance with the FAIR principles. However, it is common that the collection and curation of herbarium specimens, a foundational aspect of studies involving plants, is neglected by authors. Without publicly available specimens, huge numbers of studies that rely on the field identification of plants are fundamentally not reproducible. We argue that the collection and public availability of herbarium specimens is not only good botanical practice but is also fundamental in ensuring that plant ecological and evolutionary studies are replicable, and thus scientifically sound. Data repositories that adhere to the FAIR principles must make sure that the original data are traceable to and re-examinable at their empirical source. In order to secure replicability, and adherence to the FAIR principles, substantial changes need to be brought about to restore the practice of collecting and curating specimens, to educate students of their importance, and to properly fund the herbaria which house them.


Assuntos
Ecologia , Humanos , Reprodutibilidade dos Testes
14.
Plant Cell Environ ; 44(4): 997-1013, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33270936

RESUMO

Plants were traditionally seen as rather passive actors in their environment, interacting with each other only in so far as they competed for the same resources. In the last 30 years, this view has been spectacularly overturned, with a wealth of evidence showing that plants actively detect and respond to their neighbours. Moreover, there is evidence that these responses depend on the identity of the neighbour, and that plants may cooperate with their kin, displaying social behaviour as complex as that observed in animals. These plant-plant interactions play a vital role in shaping natural ecosystems, and are also very important in determining agricultural productivity. However, in terms of mechanistic understanding, we have only just begun to scratch the surface, and many aspects of plant-plant interactions remain poorly understood. In this review, we aim to provide an overview of the field of plant-plant interactions, covering the communal interactions of plants with their neighbours as well as the social behaviour of plants towards their kin, and the consequences of these interactions. We particularly focus on the mechanisms that underpin neighbour detection and response, highlighting both progress and gaps in our understanding of these fascinating but previously overlooked interactions.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Comunicação , Ecologia
15.
Glob Chang Biol ; 27(1): 165-176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030240

RESUMO

In recent decades, the final frost dates of winter have advanced throughout North America, and many angiosperm taxa have simultaneously advanced their flowering times as the climate has warmed. Phenological advancement may reduce plant fitness, as flowering prior to the final frost date of the winter/spring transition may damage flower buds or open flowers, limiting fruit and seed production. The risk of floral exposure to frost in the recent past and in the future, however, also depends on whether the last day of winter frost is advancing more rapidly, or less rapidly, than the date of onset of flowering in response to climate warming. This study presents the first continental-scale assessment of recent changes in frost risk to floral tissues, using digital records of 475,694 herbarium specimens representing 1,653 angiosperm species collected across North America from 1920 to 2015. For most species, among sites from which they have been collected, dates of last frost have advanced much more rapidly than flowering dates. As a result, frost risk has declined in 66% of sampled species. Moreover, exotic species consistently exhibit lower frost risk than native species, primarily because the former occupy warmer habitats where the annual frost-free period begins earlier. While reducing the probability of exposure to frost has clear benefits for the survival of flower buds and flowers, such phenological advancement may disrupt other ecological processes across North America, including pollination, herbivory, and disease transmission.


Assuntos
Magnoliopsida , Clima , Mudança Climática , Flores , América do Norte , Polinização , Estações do Ano , Temperatura , Estados Unidos
16.
Ecol Lett ; 23(3): 476-482, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31875651

RESUMO

The biotic resistance hypothesis predicts that diverse native communities are more resistant to invasion. However, past studies vary in their support for this hypothesis due to an apparent contradiction between experimental studies, which support biotic resistance, and observational studies, which find that native and non-native species richness are positively related at broad scales (small-scale studies are more variable). Here, we present a novel analysis of the biotic resistance hypothesis using 24 456 observations of plant richness spanning four community types and seven ecoregions of the United States. Non-native plant occurrence was negatively related to native plant richness across all community types and ecoregions, although the strength of biotic resistance varied across different ecological, anthropogenic and climatic contexts. Our results strongly support the biotic resistance hypothesis, thus reconciling differences between experimental and observational studies and providing evidence for the shared benefits between invasive species management and native biodiversity conservation.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Espécies Introduzidas , Plantas , Estados Unidos
17.
Am J Bot ; 107(10): 1457-1464, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945535

RESUMO

PREMISE: The use of functional traits has surged in recent decades, providing new insights ranging from individual plant fitness to ecosystem processes. Global plant trait databases have advanced our understanding of plant functional diversity, but they remain incomplete because of geographic and taxonomic biases. Herbarium specimens may help fill these gaps by providing trait information across space and time. We tested whether herbarium specimen-derived measurements are reliable estimates of three important, commonly measured functional traits-specific leaf area (SLA), branch wood specific gravity, and leaf thickness. METHODS: Leaves and branches were collected from species cultivated at Fairchild Tropical Botanic Garden and Florida International University in Miami, FL, USA. Fresh components of SLA (area), branch wood specific gravity (volume), and leaf thickness were measured following standard trait measurement protocols. We compared these trait values to corresponding measurements using plant tissues dried in a plant press following standard herbarium plant collecting protocols. RESULTS: Herbarium-derived trait measurements (dried tissues) were highly correlated with those measured using fresh tissues following standard protocols (SLA: R2 = 0.72-0.97, p < 0.01; wood specific gravity: R2 = 0.74-0.75, p < 0.01; leaf thickness: R2 = 0.96, p < 0.01). However, except for leaf thickness, linear model slope or intercept coefficients differed from 1, indicating herbarium-derived trait measurements may provide biased estimates of fresh traits without the use of correction factors. CONCLUSIONS: Herbarium-derived traits cannot always be used interchangeably with those measured from fresh tissues because of tissue shrinkage. However, herbarium-derived trait data still have the potential to drastically expand the temporal, geographic, and taxonomic scope of global trait databases.


Assuntos
Ecossistema , Folhas de Planta , Florida , Plantas , Madeira
18.
Glob Chang Biol ; 25(11): 3591-3608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343099

RESUMO

Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.


Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Estações do Ano
19.
Ecology ; 99(11): 2455-2466, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076592

RESUMO

More than 200 years ago, Alexander von Humboldt reported that tropical plant species richness decreased with increasing elevation and decreasing temperature. Surprisingly, coordinated patterns in plant, bacterial, and fungal diversity on tropical mountains have not yet been observed, despite the central role of soil microorganisms in terrestrial biogeochemistry and ecology. We studied an Andean transect traversing 3.5 km in elevation to test whether the species diversity and composition of tropical forest plants, soil bacteria, and fungi follow similar biogeographical patterns with shared environmental drivers. We found coordinated changes with elevation in all three groups: species richness declined as elevation increased, and the compositional dissimilarity among communities increased with increased separation in elevation, although changes in plant diversity were larger than in bacteria and fungi. Temperature was the dominant driver of these diversity gradients, with weak influences of edaphic properties, including soil pH. The gradients in microbial diversity were strongly correlated with the activities of enzymes involved in organic matter cycling, and were accompanied by a transition in microbial traits towards slower-growing, oligotrophic taxa at higher elevations. We provide the first evidence of coordinated temperature-driven patterns in the diversity and distribution of three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants. These findings suggest that interrelated and fundamental patterns of plant and microbial communities with shared environmental drivers occur across landscape scales. These patterns are revealed where soil pH is relatively constant, and have implications for tropical forest communities under future climate change.


Assuntos
Microbiologia do Solo , Solo/química , Biodiversidade , Ecossistema , Fungos/classificação , Temperatura
20.
BMC Plant Biol ; 17(1): 200, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132298

RESUMO

BACKGROUND: Understanding how landscape factors, including suites of geographic and environmental variables, and both historical and contemporary ecological and evolutionary processes shape the distribution of genetic diversity is a primary goal of landscape and conservation genetics and may be particularly consequential for species involved in ecological restoration. In this study, we examine the factors that shape the distribution of genetic variation in a leguminous shrub (Caragana microphylla) important for restoration efforts on the Mongolian Plateau in China. This region houses several major bioclimatic gradients, and C. microphylla is an important restoration species because it stabilizes soils and prevents advancing desertification on the Inner Mongolia Plateau caused by ongoing climate change. RESULTS: We assembled an expansive genomic dataset, consisting of 22 microsatellite loci, four cpDNA regions, and 5788 genome-wide SNPs from ten populations of C. microphylla. We then applied ecological niche modelling and linear and non-linear regression techniques to investigate the historical and contemporary forces that explain patterns of genetic diversity and population structure in C. microphylla on the Inner Mongolia Plateau. We found strong evidence that both geographic and environmental heterogeneity contribute to genetic differentiation and that the spatial distribution of genetic diversity in C. microphylla appears to result partly from the presence of a glacial refugium at the southwestern edge of its current range. CONCLUSIONS: These results suggest that geographic, environmental, and historical factors have all contributed to spatial genetic variation in this ecologically important species. These results should guide restoration plans to sustain genetic diversity during plant translocations.


Assuntos
Caragana/genética , China , Clima , Conservação dos Recursos Naturais , DNA de Cloroplastos/genética , DNA de Plantas/genética , Demografia , Meio Ambiente , Variação Genética/genética , Técnicas de Genotipagem , Geografia , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA