RESUMO
The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.
Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , BiodiversidadeRESUMO
While conventional pathogenic protists have been extensively studied, there is an underappreciated constitutive protist microbiota that is an integral part of the vertebrate microbiome. The impact of these species on the host and their potential contributions to mucosal immune homeostasis remain poorly studied. Here, we show that the protozoan Tritrichomonas musculis activates the host epithelial inflammasome to induce IL-18 release. Epithelial-derived IL-18 promotes dendritic cell-driven Th1 and Th17 immunity and confers dramatic protection from mucosal bacterial infections. Along with its role as a "protistic" antibiotic, colonization with T. musculis exacerbates the development of T-cell-driven colitis and sporadic colorectal tumors. Our findings demonstrate a novel mutualistic host-protozoan interaction that increases mucosal host defenses at the cost of an increased risk of inflammatory disease.
Assuntos
Colite/imunologia , Colite/parasitologia , Interações Hospedeiro-Parasita , Inflamassomos/imunologia , Mucosa Intestinal/parasitologia , Microbiota/imunologia , Tricomoníase/imunologia , Trichomonas/imunologia , Animais , Colite/microbiologia , Dientamoeba/imunologia , Imunidade nas Mucosas , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Simbiose , Células Th1/imunologia , Células Th17/imunologiaRESUMO
Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.
Assuntos
Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Cryptosporidium/imunologia , Células Dendríticas/imunologia , Interações Hospedeiro-Parasita/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Células Th1/imunologia , Animais , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Homeostase , Mucosa Intestinal/metabolismo , Camundongos , Microbiota , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/metabolismoRESUMO
Helminths, allergens, and certain protists induce type 2 immune responses, but the underlying mechanisms of immune activation remain poorly understood. In the small intestine, chemosensing by epithelial tuft cells results in the activation of group 2 innate lymphoid cells (ILC2s), which subsequently drive increased tuft cell frequency. This feedforward circuit is essential for intestinal remodeling and helminth clearance. ILC2 activation requires tuft-cell-derived interleukin-25 (IL-25), but whether additional signals regulate the circuit is unclear. Here, we show that tuft cells secrete cysteinyl leukotrienes (cysLTs) to rapidly activate type 2 immunity following chemosensing of helminth infection. CysLTs cooperate with IL-25 to activate ILC2s, and tuft-cell-specific ablation of leukotriene synthesis attenuates type 2 immunity and delays helminth clearance. Conversely, cysLTs are dispensable for the tuft cell response induced by intestinal protists. Our findings identify an additional tuft cell effector function and suggest context-specific regulation of tuft-ILC2 circuits within the small intestine.
Assuntos
Cisteína/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Leucotrienos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/metabolismo , Cisteína/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Imunidade Inata/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leucotrienos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/fisiologia , Infecções por Strongylida/parasitologiaRESUMO
In the small intestine, type 2 responses are regulated by a signaling circuit that involves tuft cells and group 2 innate lymphoid cells (ILC2s). Here, we identified the microbial metabolite succinate as an activating ligand for small intestinal (SI) tuft cells. Sequencing analyses of tuft cells isolated from the small intestine, gall bladder, colon, thymus, and trachea revealed that expression of tuft cell chemosensory receptors is tissue specific. SI tuft cells expressed the succinate receptor (SUCNR1), and providing succinate in drinking water was sufficient to induce a multifaceted type 2 immune response via the tuft-ILC2 circuit. The helminth Nippostrongylus brasiliensis and a tritrichomonad protist both secreted succinate as a metabolite. In vivo sensing of the tritrichomonad required SUCNR1, whereas N. brasiliensis was SUCNR1 independent. These findings define a paradigm wherein tuft cells monitor microbial metabolites to initiate type 2 immunity and suggest the existence of other sensing pathways triggering the response to helminths.
Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Linhagem Celular , Feminino , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/efeitos dos fármacos , Nippostrongylus/imunologia , Nippostrongylus/metabolismo , Especificidade de Órgãos , Infecções por Protozoários/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia , Especificidade da Espécie , Infecções por Strongylida/imunologia , Canais de Cátion TRPM/metabolismo , Células Th2/imunologia , Tritrichomonas/efeitos dos fármacos , Tritrichomonas/imunologia , Tritrichomonas/metabolismoRESUMO
Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.
Assuntos
Vírus Gigantes , Estramenópilas , Viroses , Humanos , Virófagos , Vírus Gigantes/genética , Estramenópilas/genética , AntiviraisRESUMO
Celiac disease (CeD) is an immune disorder characterized by gluten intolerance that can be unleashed by enteric viral infections in mice. However, Sanchez-Medina et al. recently identified a murine commensal protist, Tritrichomonas arnold, that protects against reovirus-induced intolerance to dietary protein by counteracting virus-induced epithelial stress and proinflammatory dendritic cell (DC) activation.
Assuntos
Doença Celíaca , Viroses , Animais , Camundongos , Doença Celíaca/metabolismo , Tolerância ImunológicaRESUMO
Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be "genomic fossils." Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses.
Assuntos
Eucariotos , Vírus , Animais , Eucariotos/genética , Vírus de DNA/genética , Vírus/genética , Virófagos , Genoma Viral/genética , FilogeniaRESUMO
In nature, several ciliated protists possess the remarkable ability to execute ultrafast motions using protein assemblies called myonemes, which contract in response to Ca2+ ions. Existing theories, such as actomyosin contractility and macroscopic biomechanical latches, do not adequately describe these systems, necessitating development of models to understand their mechanisms. In this study, we image and quantitatively analyze the contractile kinematics observed in two ciliated protists (Vorticella sp. and Spirostomum sp.), and, based on the mechanochemistry of these organisms, we propose a minimal mathematical model that reproduces our observations as well as those published previously. Analyzing the model reveals three distinct dynamic regimes, differentiated by the rate of chemical driving and the importance of inertia. We characterize their unique scaling behaviors and kinematic signatures. Besides providing insights into Ca2+-powered myoneme contraction in protists, our work may also inform the rational design of ultrafast bioengineered systems such as active synthetic cells.
Assuntos
Citoesqueleto de Actina , Células Artificiais , Actomiosina , Engenharia Biomédica , Trifosfato de AdenosinaRESUMO
Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ribonucleoproteínas , Edição de Genes/métodos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Leishmania/genética , Leishmania/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo , TransfecçãoRESUMO
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Assuntos
Helmintos , Parasitos , Animais , Helmintos/fisiologia , Humanos , Sistema ImunitárioRESUMO
Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.
Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Simbiose , Amoeba/microbiologia , Amoeba/virologia , Ecossistema , Vírus Gigantes/genética , Hibridização in Situ Fluorescente , Mimiviridae/genéticaRESUMO
Interactions between various microbial pathogens including viruses, bacteria, fungi, oomycetes, and their plant hosts have traditionally been the focus of phytopathology. In recent years, a significant and growing interest in the study of eukaryotic microorganisms not classified among fungi or oomycetes has emerged. Many of these protists establish complex interactions with photosynthetic hosts, and understanding these interactions is crucial in understanding the dynamics of these parasites within traditional and emerging types of farming, including marine aquaculture. Many phytopathogenic protists are biotrophs with complex polyphasic life cycles, which makes them difficult or impossible to culture, a fact reflected in a wide gap in the availability of comprehensive genomic data when compared to fungal and oomycete plant pathogens. Furthermore, our ability to use available genomic resources for these protists is limited by the broad taxonomic distance that these organisms span, which makes comparisons with other genomic datasets difficult. The current rapid progress in genomics and computational tools for the prediction of protein functions and interactions is revolutionizing the landscape in plant pathology. This is also opening novel possibilities, specifically for a deeper understanding of protist effectors. Tools like AlphaFold2 enable structure-based function prediction of effector candidates with divergent protein sequences. In turn, this allows us to ask better biological questions and, coupled with innovative experimental strategies, will lead into a new era of effector research, especially for protists, to expand our knowledge on these elusive pathogens and their interactions with photosynthetic hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Fotossíntese , Doenças das Plantas , Plantas , Plantas/parasitologia , Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Eucariotos/genética , Genômica , Oomicetos/fisiologia , Oomicetos/patogenicidade , Oomicetos/genéticaRESUMO
Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.
Assuntos
Cálcio , Complexo de Golgi , Manganês , Nicotiana , Saccharomyces cerevisiae , Nicotiana/genética , Manganês/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Transporte Biológico/genéticaRESUMO
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
Assuntos
Fenótipo , Tetrahymena thermophila , Tetrahymena thermophila/fisiologia , Temperatura , Adaptação FisiológicaRESUMO
Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.
Assuntos
Chlorella , Cadeia Alimentar , Phycodnaviridae , Evolução Biológica , Chlorella/virologiaRESUMO
Soil protists have been shown to contribute to the structure and function of the rhizosphere in a variety of ways. Protists are key contributors to nutrient cycling through the microbial loop, where biomass is digested by protists and otherwise stored nutrients are returned to the environment. Protists have also been shown to feed on plant pathogenic bacteria and alter root microbiomes in ways that may benefit plants. Recently, a mechanism involving bacterial transport, facilitated by protists, has been hypothesized to contribute to the spatial distribution of bacteria in the rhizosphere. Here, we observe the differential abilities of three soil protists: a ciliate (Colpoda sp.), a flagellate (Cercomonas sp.), and a naked amoeba (Acanthamoeba castellanii) to transport nitrogen-fixing Sinorhizobium meliloti to infectible root tips. Co-inoculation of protists plus S. meliloti resulted in the movement of bacteria, as measured by the presence of nitrogen-fixing nodules, up to 15 cm farther down the root systems when compared to plants inoculated with S. meliloti alone. Co-inoculation of the ciliate, Colpoda sp., with S. meliloti, resulted in shoot weights that were similar to plants that grew in nitrogen-replete potting mix. Colpoda sp.-feeding style and motility likely contributed to their success at transporting bacteria through the rhizosphere. We observed that the addition of protists alone without the co-inoculum of S. meliloti resulted in plants with larger shoot weights than control plants. Follow-up experiments showed that protists plus their associated microbiomes were aiding in plant health, likely through means of nutrient cycling.IMPORTANCEProtists represent a significant portion of the rhizosphere microbiome and have been shown to contribute to plant health, yet they are understudied compared to their bacterial and fungal counterparts. This study elucidates their role in the rhizosphere community and suggests a mechanism by which protists can be used to move bacteria along plant roots. We found that the co-inoculation of protists with nitrogen-fixing beneficial bacteria, Sinorhizobium meliloti, resulted in nodules farther down the roots when compared to plants inoculated with S. meliloti alone, and shoot weights similar to plants that received nitrogen fertilizer. These data illustrate the ability of protists to transport viable bacteria to uninhabited regions of the root system.
Assuntos
Bactérias , Plantas , Rizosfera , Solo , Nitrogênio , Raízes de Plantas/microbiologia , Microbiologia do SoloRESUMO
Protists are a diverse and understudied group of microbial eukaryotic organisms especially in terrestrial environments. Advances in molecular methods are increasing our understanding of the distribution and functions of these creatures; however, there is a vast array of choices researchers make including barcoding genes, primer pairs, PCR settings, and bioinformatic options that can impact the outcome of protist community surveys. Here, we tested four commonly used primer pairs targeting the V4 and V9 regions of the 18S rRNA gene using different PCR annealing temperatures and processed the sequences with different bioinformatic parameters in 10 diverse soils to evaluate how primer pair, amplification parameters, and bioinformatic choices influence the composition and richness of protist and non-protist taxa using Illumina sequencing. Our results showed that annealing temperature influenced sequencing depth and protist taxon richness for most primer pairs, and that merging forward and reverse sequencing reads for the V4 primer pairs dramatically reduced the number of sequences and taxon richness of protists. The data sets of primers that targeted the same 18S rRNA gene region (e.g., V4 or V9) had similar protist community compositions; however, data sets from primers targeting the V4 18S rRNA gene region detected a greater number of protist taxa compared to those prepared with primers targeting the V9 18S rRNA region. There was limited overlap of protist taxa between data sets targeting the two different gene regions (80/549 taxa). Together, we show that laboratory and bioinformatic choices can substantially affect the results and conclusions about protist diversity and community composition using metabarcoding.IMPORTANCEEcosystem functioning is driven by the activity and interactions of the microbial community, in both aquatic and terrestrial environments. Protists are a group of highly diverse, mostly unicellular microbes whose identity and roles in terrestrial ecosystem ecology have been largely ignored until recently. This study highlights the importance of choices researchers make, such as primer pair, on the results and conclusions about protist diversity and community composition in soils. In order to better understand the roles protist taxa play in terrestrial ecosystems, biases in methodological and analytical choices should be understood and acknowledged.
Assuntos
Biologia Computacional , Primers do DNA , Eucariotos , RNA Ribossômico 18S , Microbiologia do Solo , RNA Ribossômico 18S/genética , Biologia Computacional/métodos , Eucariotos/genética , Eucariotos/classificação , Primers do DNA/genética , Biodiversidade , Temperatura , Solo/parasitologia , Solo/química , Reação em Cadeia da PolimeraseRESUMO
The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.
Assuntos
Arabidopsis , Plasmodioforídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia , Regulação da Expressão Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão GênicaRESUMO
Planktonic foraminifera were long considered obligate sexual outbreeders but recent observations have shown that nonspinose species can reproduce by multiple fission. The frequency of multiple fission appears low but the survival rate of the offspring is high and specimens approaching fission can be distinguished. We made use of this observation and established a culturing protocol aimed at enhancing the detection and frequency of fission. Using this protocol, we selectively cultured specimens of Neogloboquadrina pachyderma and raised the frequency of reproduction by fission in culture from 3% in randomly selected specimens to almost 60%. By feeding the resulting offspring different strains of live diatoms, we obtained a thriving offspring population and during the subsequent 6 months of culturing, we observed two more successive generations produced by fission. This provides evidence that in nonspinose species of planktonic foraminifera, reproduction by multiple fission is likely clonal and corresponds to the schizont phase known from benthic foraminifera. We subsequently tested if a similar culturing strategy could be applied to Globigerinita glutinata, representing a different clade of planktonic foraminifera, and we were indeed able to obtain offspring via multiple fission in this species. This work opens new avenues for laboratory-based experimental work with planktonic foraminifera.