Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Transl Med ; 21(1): 390, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328854

RESUMO

BACKGROUND: Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. METHODS: Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. RESULTS: Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. CONCLUSIONS: Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.


Assuntos
Neoplasias Colorretais , Tolerância a Radiação , Humanos , Prognóstico , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Morte Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/metabolismo
2.
J Neurooncol ; 163(2): 313-325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195411

RESUMO

AIM: Effective biomarkers for estimating glioma prognosis are deficient. Canonically, caspase-3 acts as an "apoptosis executioner". However, its prognostic role in glioma and mechanistic effects on prognosis remain unclear. METHODS: With glioma tissue microarrays, the prognostic roles of cleaved caspase-3 and its association with angiogenesis were explored. Next, by analyzing the mRNA microarray data from the CGGA, the prognostic role of CASP3 expression and correlations between CASP3 and markers of glioma angiogenesis and proliferation were investigated. To biologically interpret the prognostic role of caspase-3 in glioma, the influence of caspase-3 on surrounding angiogenesis and glioma cell repopulation was investigated with an in vitro cell co-culture model, which comprises irradiated U87 cells and un-irradiated firefly luciferase (Fluc)-labeled HUVEC (HUVEC-Fluc) or U87 (U87-Fluc) cells. The over-expressed dominant-negative caspase-3 was used to suppress normal caspase-3 activity. RESULTS: High levels of cleaved caspase-3 expression were associated with poor survival outcomes in glioma patients. Higher microvessel density was observed in patients with high levels of cleaved caspase-3 expression. By mining the microarray data in CGGA, it was revealed that higher CASP3 expression was found in glioma patients with lower Karnofsky Performance score, higher WHO grade, malignant histological subtype, wild-type IDH. Higher CASP3 expression indicated a worse survival rate in glioma patients. Patients with high CASP3 expression and negative IDH mutation showed the worst survival rate. Positive correlations were found between CASP3 and markers of tumor angiogenesis and proliferation. Subsequent data based on an in vitro cell co-culture model revealed that caspase-3 in irradiated glioma cells mediated pro-angiogenic and repopulation-promoting effects via regulating COX-2 signaling. With glioma tissue microarrays, high levels of COX-2 expression showed inferior survival outcomes in glioma patients. Glioma patients with high levels of cleaved caspase-3 and COX-2 expression showed the worst survival outcomes. CONCLUSION: This study innovatively identified an unfavorable prognostic role of caspase-3 in glioma. The pro-angiogenic and repopulation-prompting effects of caspase-3/COX-2 signaling may explain its unfavorable prognostic role and offer novel insights into therapy sensitization and curative effect prediction of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2 , Glioma/patologia , Prognóstico
3.
Mol Cancer ; 19(1): 68, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228703

RESUMO

BACKGROUND: Tumor repopulation is a major cause of radiotherapy failure. Previous investigations highlighted that dying tumor cells played vital roles in tumor repopulation through promoting proliferation of the residual tumor repopulating cells (TRCs). However, TRCs also suffer DNA damage after radiotherapy, and might undergo mitotic catastrophe under the stimulation of proliferative factors released by dying cells. Hence, we intend to find out how these paradoxical biological processes coordinated to potentiate tumor repopulation after radiotherapy. METHODS: Tumor repopulation models in vitro and in vivo were used for evaluating the therapy response and dissecting underlying mechanisms. RNA-seq was performed to find out the signaling changes and identify the significantly changed miRNAs. qPCR, western blot, IHC, FACS, colony formation assay, etc. were carried out to analyze the molecules and cells. RESULTS: Exosomes derived from dying tumor cells induced G1/S arrest and promoted DNA damage response to potentiate survival of TRCs through delivering miR-194-5p, which further modulated E2F3 expression. Moreover, exosomal miR-194-5p alleviated the harmful effects of oncogenic HMGA2 under radiotherapy. After a latent time, dying tumor cells further released a large amount of PGE2 to boost proliferation of the recovered TRCs, and orchestrated the repopulation cascades. Of note, low-dose aspirin was found to suppress pancreatic cancer repopulation upon radiation via inhibiting secretion of exosomes and PGE2. CONCLUSION: Exosomal miR-194-5p enhanced DNA damage response in TRCs to potentiate tumor repopulation. Combined use of aspirin and radiotherapy might benefit pancreatic cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Radioterapia/métodos , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Contemp Oncol (Pozn) ; 18(4): 260-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258584

RESUMO

AIM OF THE STUDY: FaDu human squamous cell carcinoma (FaDu-hSCC) demonstrated accelerated tumor repopulation during fractionated irradiation with pathological validation in a xenograft model system. Previous studies showed that the selective cyclooxygenase (COX)-2 inhibitor celecoxib can enhance the tumor response to radiotherapy. So we aimed to explore the effect of celecoxib in inducing apoptosis and inhibiting repopulation of FaDu tumors in nude mice during fractionated radiotherapy. MATERIAL AND METHODS: FaDu-hSCC was transplanted into the right hind leg of BALB/C nude mice. Mice were treated with celecoxib and/or fractionated irradiation. Celecoxib (100 mg/kg/day) was administered by daily gavage. Irradiation was delivered with 12 to 18 fractions of 3.0 Gy daily or every second day based on Petersen's repopulation model. At different time points, tumors were excised for immunohistochemistry staining. RESULTS: Significant tumor repopulation occurred after about 18 days of radiotherapy. On average, Ki-67 and bromodeoxyuridine (BrdUrd) labeling indices (LI) decreased with daily irradiation (both p < 0.05) and increased with every-second-day irradiation (both p > 0.05), suggesting accelerated repopulation. Ki-67 LI decreased in celecoxib concurrent with radiotherapy for 12 fractions in 24 days and 18 fractions in 36 days compared with irradiated alone (p = 0.004 and 0.042, respectively). BrdUrd LI values were lower in the concurrent groups than irradiated alone (p = 0.001 and 0.006, respectively). Epithelial growth factor receptor (EGFR) expression score decreased in the concurrent groups than irradiated alone (p = 0.037 and 0.031, respectively). Caspase-3 expression scores were higher in the concurrent groups than irradiated alone (p = 0.05 and 0.006, respectively). CONCLUSIONS: Celecoxib concurrent radiotherapy could inhibit tumor repopulation and increase tumor apoptosis during the treatment in FaDu squamous cell carcinoma.

5.
Heliyon ; 10(10): e31346, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807872

RESUMO

Pancreatic cancer is one of the most lethal cancers with significant radioresistance and tumor repopulation after radiotherapy. As a type of short non-coding RNA that regulate various biological and pathological processes, miRNAs might play vital role in radioresistance. We found by miRNA sequencing that microRNA-26a (miR-26a) was upregulated in pancreatic cancer cells after radiation, and returned to normal state after a certain time. miR-26a was defined as a tumor suppressive miRNA by conventional tumor biology experiments. However, transient upregulation of miR-26a after radiation significantly promoted radioresistance, while stable overexpression inhibited radioresistance, highlighting the importance of molecular dynamic changes after treatment. Mechanically, transient upregulation of miR-26a promoted cell cycle arrest and DNA damage repair to promote radioresistance. Further experiments confirmed HMGA2 as the direct functional target, which is an oncogene but enhances radiosensitivity. Moreover, PTGS2 was also the target of miR-26a, which might potentiate tumor repopulation via delaying the synthesis of PGE2. Overall, this study revealed that transient upregulation of miR-26a after radiation promoted radioresistance and potentiated tumor repopulation, highlighting the importance of dynamic changes of molecules upon radiotherapy.

6.
Adv Sci (Weinh) ; 10(8): e2204177, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658726

RESUMO

Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.


Assuntos
Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/radioterapia
7.
Mol Oncol ; 15(8): 2219-2234, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33523579

RESUMO

Tumor repopulation occurs when residual tumor cells surviving therapies tenaciously proliferate and re-establish the tumor. The cellular and molecular mechanisms underlying this process remain poorly understood. In this study, we propose that polyploid giant cancer cells (PGCCs) are involved in tumor repopulation via neosis following radiotherapy. We found that although the majority of PGCCs induced by irradiation underwent cell death, some PGCCs exhibited proliferative capacity. Utilizing time-lapse microscopy and single-cell cloning assays, we observed that proliferating PGCCs underwent neosis, thereby contributing to tumor cell repopulation after irradiation. Notably, HMGB1 released from dying tumor cells rather than intracellular HMGB1 could promote neosis-based tumor repopulation, and the latter could be suppressed by the use of HMGB1 inhibitors. Taken together, our results indicate that PGCC can initiate tumor repopulation via neosis following radiation therapy.


Assuntos
Neoplasias Induzidas por Radiação/patologia , Neoplasias/patologia , Poliploidia , Morte Celular , Linhagem Celular Tumoral , Humanos
8.
Front Oncol ; 10: 607727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330109

RESUMO

Tumor repopulation during cycles of radiotherapy limits the radio-response in ensuing cycles and causes failure of treatment. It is thus of vital importance to unveil the mechanisms underlying tumor repopulating cells. Increasing evidence suggests that a subpopulation of drug-tolerant persister cancer cells (DTPs) could survive the cytotoxic treatment and resume to propagate. Whether these persister cells contribute to development of radio-resistance remains elusive. Based on the genetic profiling of DTPs by integrating datasets from Gene Expression Omnibus database, this study aimed to provide novel insights into tumor-repopulation mediated radio-resistance and identify predictive biomarkers for radio-response in clinic. A prognostic risk index, grounded on four persister genes (LYNX1, SYNPO, GADD45B, and PDLIM1), was constructed in non-small-cell lung cancer patients from The Cancer Genome Atlas Program (TCGA) using stepwise Cox regression analysis. Weighted gene co-expression network analysis further confirmed the interaction among persister-gene based risk score, radio-response and overall survival time. In addition, the predictive role of risk index was validated in vitro and in other types of TCGA patients. Gene set enrichment analysis was performed to decipher the possible biological signaling, which indicated that two forces behind persister cells, stress response and survival adaptation, might fuel the tumor repopulation after radiation. Targeting these persister cells may represent a new prognostic and therapeutic approach to enhance radio-response and prevent radio-resistance induced by tumor repopulation.

9.
Trends Cancer ; 6(5): 419-431, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32348737

RESUMO

Accelerated tumor repopulation following chemoradiation is often observed in the clinic, but the underlying mechanisms remain unclear. In recent years, dying cells caused by chemoradiation have attracted much attention, and they may manifest diverse forms of cell death and release complex factors and thus orchestrate tumor repopulation cascades. Dying cells potentiate the survival of residual living tumor cells, remodel the tumor microenvironment, boost cell proliferation, and accelerate cancer cell metastasis. Moreover, dying cells also mediate the side effects of chemoradiation. These findings suggest more caution when weighing the benefits of cytotoxic therapy and the need to accordingly develop new strategies for cancer treatment.


Assuntos
Antineoplásicos/efeitos adversos , Morte Celular/imunologia , Quimiorradioterapia/efeitos adversos , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Senescência Celular/efeitos da radiação , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
10.
Aging (Albany NY) ; 12(21): 21758-21776, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33180744

RESUMO

Radiotherapy is an effective treatment for non-small cell lung cancer (NSCLC). However, irradiated, dying tumor cells generate potent growth stimulatory signals during radiotherapy that promote the repopulation of adjacent surviving tumor cells to cause tumor recurrence. We investigated the function of caspase-3 in NSCLC repopulation after radiotherapy. We found that radiotherapy induced a DNA damage response (DDR), activated caspase-3, and promoted tumor repopulation in NSCLC cells. Unexpectedly, caspase-3 knockout attenuated the ataxia-telangiectasia mutated (ATM)/p53-initiated DDR by decreasing nuclear migration of endonuclease G (EndoG), thereby reducing the growth-promoting effect of irradiated, dying tumor cells. We also identified p53 as a regulator of the Cox-2/PGE2 axis and its involvement in caspase-3-induced tumor repopulation after radiotherapy. In addition, injection of caspase-3 knockout NSCLC cells impaired tumor growth in a nude mouse model. Our findings reveal that caspase-3 promotes tumor repopulation in NSCLC cells by activating DDR and the downstream Cox-2/PGE2 axis. Thus, caspase-3-induced ATM/p53/Cox-2/PGE2 signaling pathway could provide potential therapeutic targets to reduce NSCLC recurrence after radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/metabolismo , Neoplasias Pulmonares/patologia , Radiação Ionizante , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dano ao DNA/fisiologia , Dano ao DNA/efeitos da radiação , Dinoprostona/metabolismo , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
11.
J Exp Clin Cancer Res ; 38(1): 461, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31706322

RESUMO

BACKGROUND: Tumor cell repopulation after radiotherapy is a major cause for the tumor radioresistance and recurrence. This study aims to investigate the underlying mechanism of tumor repopulation after radiotherapy, with focus on whether and how necroptosis takes part in this process. METHODS: Necroptosis after irradiation were examined in vitro and in vivo. And the growth-promoting effect of necroptotic cells was investigated by chemical inhibitors or shRNA against necroptosis associated proteins and genes in in vitro and in vivo tumor repopulation models. Downstream relevance factors of necroptosis were identified by western blot and chemiluminescent immunoassays. Finally, the immunohistochemistry staining of identified necroptosis association growth stimulation factor was conducted in human colorectal tumor specimens to verify the relationship with clinical outcome. RESULTS: Radiation-induced necroptosis depended on activation of RIP1/RIP3/MLKL pathway, and the evidence in vitro and in vivo demonstrated that the inhibition of necroptosis attenuated growth-stimulating effects of irradiated tumor cells on living tumor reporter cells. The JNK/IL-8 were identified as downstream molecules of pMLKL during necroptosis, and inhibition of JNK, IL-8 or IL-8 receptor significantly reduced tumor repopulation after radiotherapy. Moreover, the high expression of IL-8 was associated with poor clinical prognosis in colorectal cancer patients. CONCLUSIONS: Necroptosis associated tumor repopulation after radiotherapy depended on activation of RIP1/RIP3/MLKL/JNK/IL-8 pathway. This novel pathway provided new insight into understanding the mechanism of tumor radioresistance and repopulation, and MLKL/JNK/IL-8 could be developed as promising targets for blocking tumor repopulation to enhance the efficacy of colorectal cancer radiotherapy.


Assuntos
Interleucina-8/metabolismo , Necroptose , Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Medições Luminescentes , Camundongos , Imagem Molecular , Necroptose/efeitos da radiação , Neoplasias/genética , Neoplasias/radioterapia
12.
Oncotarget ; 7(45): 72978-72989, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27659522

RESUMO

Multi-cycle chemotherapy is commonly used in the clinic, while the phenomena of enrichment of cancer stem cells (CSCs) and enhanced multi-drug resistance (MDR) are commonly involved. This research was designed for evaluating this successive administration. Chitosan oligosaccharide-g-stearic acid (CSOSA) polymer was used as the drug delivery system (DDS) to perform tri-cycle chemotherapy on a new tumor model induced by mammosphere cells. In vitro, on CSCs enriched mammospheres model, the doxorubicin-loaded CSOSA (CSOSA/DOX) displayed an improved growth inhibition effect measured by acid phosphatase assay (APH). While in vivo, the CSOSA/DOX micelles blocked tumor progression and led to a marked decrease of CSCs proportion as well as MDR capacity. What's more, the CSOSA/DOX helped decay the microenvironment and attenuate systemic side effects. We concluded that the CSOSA polymer could be a potential DDS for long-term multi-cycle chemotherapy in antitumor research.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Glicolipídeos , Micelas , Células-Tronco Neoplásicas/efeitos dos fármacos , Polímeros , Animais , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Quitosana , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares , Resultado do Tratamento , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
FEBS Lett ; 589(22): 3438-48, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26450371

RESUMO

Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/metabolismo , Melanoma/patologia
14.
Radiother Oncol ; 111(3): 475-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813091

RESUMO

BACKGROUND AND PURPOSE: FaDu human squamous cell carcinoma (FaDu-hSCC) demonstrates accelerated tumor repopulation during fractionated irradiation with pathological validation (Ki-67 and BrdUrd makers) in a xenograft model system. However, these and other functional assays must be performed ex vivo and post hoc. We propose a novel, in vivo, real-time assay utilizing (18)F-FLT PET. MATERIAL AND METHODS: Nude mice with FaDu-hSCC were irradiated with 12 or 18 fractions of 1.8 Gy ([Dm]=3.0 Gy), either daily or every second day. (18)F-FLT micro-PET scans were performed at different time points, FLT parameters (SUVmax, SUVmean, and T/NT) were measured. Tumor sections were stained for Ki-67 and BrdUrd, a labeling index (LI) was calculated. Imaging-pathology correlation was determined by comparing FLT parameters and immunohistochemical results. RESULTS: Measured SUVmax, SUVmean and T/NT decreased significantly after daily irradiation with 12 fractions in 12 days (P<0.05) and 18 fractions in 18 days (P<0.05). In contrast, these parameters increased in mice treated with 12 fractions in 24 days (P>0.05) and 18 fractions in 36 days (P>0.05), suggesting accelerated repopulation. Similarly, Ki-67 and BrdUrd LIs demonstrated significant decreases with daily irradiation (P<0.05), and increases with every-second-day irradiation (P>0.05). (18)F-FLT parameters correlated strongly with proliferation markers (r(2): 0.679-0.879, P<0.001). CONCLUSIONS: (18)F-FLT parameters were in good agreement with Ki-67 and BrdUrd Li. These results may support a potential role for (18)F-FLT PET in real-time detection of tumor repopulation during fractionated radiotherapy.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Didesoxinucleosídeos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Hipofaríngeas/diagnóstico por imagem , Neoplasias Hipofaríngeas/radioterapia , Compostos Radiofarmacêuticos , Animais , Carcinoma de Células Escamosas/patologia , Processos de Crescimento Celular/fisiologia , Processos de Crescimento Celular/efeitos da radiação , Linhagem Celular Tumoral , Fracionamento da Dose de Radiação , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Hipofaríngeas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Distribuição Aleatória , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncol Lett ; 7(6): 1755-1760, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24932228

RESUMO

Repopulation of tumor cells during radiotherapy is believed to be a significant cause for treatment failure. The phenomenon of tumor repopulation during fractionated radiotherapy was found from clinical observations that identified that the local control rate decreased with a prolonged treatment time. A series of animal experiments with varied overall treatment time and fractionated doses were performed to demonstrate tumor cell repopulation during radiotherapy in various mouse xenograft models. However, conventional detection methods are challenging, as it is difficult to separate viable cells from those destined for apoptosis during fractionated radiotherapy. In essence, the mechanism of tumor repopulation involves the continuing proliferation of clonogenic tumor cells. In vivo imaging, tracking and targeting of the repopulation of these cells has been of clinical interest so as to administer a higher dose to the tumor repopulation regions. Currently, functional imaging methods, including 3'-deoxy-3'-18F-fluorothymidine positron emission tomography (18F-FLT PET), are showing promise in assessing the proliferation activity of tumors in vivo. This review mainly focuses on the phenomenon of tumor repopulation during radiotherapy and its conventional and novel detection methods, particularly on the feasibility of 18F-FLT PET for the detection of tumor-cell repopulation.

16.
Transl Cancer Res ; 2(5): 442-448, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25599021

RESUMO

Radiotherapy remains one of most important treatment modalities for solid tumors. Current radiotherapy is mostly based on a set of concepts called the 4"R"s, which were established when there was lack of understanding of the underlying molecular mechanisms. However, progress made in the past two decades are beginning to allow us to see some of the molecular details involved in tumor response to radiation therapy. In this review, we will attempt to summarize some of the key discoveries in molecular radiation biology that have direct relevance to radiotherapy. We will focus our discussion on areas such as radiation induced tumor vasculogenesis, stem cell mobilization, and cellular repopulation. We hope our discussion will stimulate further studies in this important area of cancer research.

17.
Clinics ; Clinics;73(supl.1): e792s, 2018.
Artigo em Inglês | LILACS | ID: biblio-974957

RESUMO

Platelet activating factor is a lipid mediator of inflammation, and in recent decades, it has emerged as an important factor in tumor outcomes. Platelet activating factor acts by specific binding to its receptor, which is present in both tumor cells and cells that infiltrate tumors. Pro-tumorigenic effects of platelet activating factor receptor in tumors includes promotion of tumor cell proliferation, production of survival signals, migration of vascular cells and formation of new vessels and stimulation of dendritic cells and macrophages suppressor phenotype. In experimental models, blocking of platelet activating factor receptor reduced tumor growth and increased animal survival. During chemotherapy and radiotherapy, tumor cells that survive treatment undergo accelerated proliferation, a phenomenon known as tumor cell repopulation. Work from our group and others showed that these treatments induce overproduction of platelet activating factor-like molecules and increase expression of its receptor in tumor cells. In this scenario, antagonists of platelet activating factor markedly reduced tumor repopulation. Here, we note that combining chemo- and radiotherapy with platelet activating factor antagonists could be a promising strategy for cancer treatment.


Assuntos
Animais , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Neoplasias Experimentais/terapia , Terapia Combinada/métodos , Linhagem Celular Tumoral , Neoplasias Experimentais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/terapia
18.
J Med Phys ; 34(4): 206-11, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20098550

RESUMO

Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling) is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA