Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.589
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925112

RESUMO

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.

2.
Cell ; 186(11): 2438-2455.e22, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37178687

RESUMO

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.


Assuntos
Processamento Alternativo , Isoformas de RNA , Sítio de Iniciação de Transcrição , Humanos , Poliadenilação , Regiões Promotoras Genéticas , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo
3.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
4.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688133

RESUMO

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Animais , Cromatina , Éxons , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA
5.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113466

RESUMO

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Assuntos
DNA Polimerase Dirigida por RNA , Retroelementos , Alanina/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA , RNA Polimerases Dirigidas por DNA/genética , Humanos , Íntrons , Isoleucina/genética , DNA Polimerase Dirigida por RNA/química
6.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792375

RESUMO

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Mamíferos/genética , Homeostase do Telômero/genética , Animais , Reparo do DNA por Junção de Extremidades , Humanos , Mutação , Leveduras/genética
7.
Cell ; 184(6): 1636-1647, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33639085

RESUMO

Rapid increases of energy consumption and human dependency on fossil fuels have led to the accumulation of greenhouse gases and consequently, climate change. As such, major efforts have been taken to develop, test, and adopt clean renewable fuel alternatives. Production of bioethanol and biodiesel from crops is well developed, while other feedstock resources and processes have also shown high potential to provide efficient and cost-effective alternatives, such as landfill and plastic waste conversion, algal photosynthesis, as well as electrochemical carbon fixation. In addition, the downstream microbial fermentation can be further engineered to not only increase the product yield but also expand the chemical space of biofuels through the rational design and fine-tuning of biosynthetic pathways toward the realization of "designer fuels" and diverse future applications.


Assuntos
Biocombustíveis/análise , Desenvolvimento Sustentável , Vias Biossintéticas , Ciclo do Carbono , Humanos , Lignina/metabolismo , Resíduos
8.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
9.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33338423

RESUMO

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Assuntos
Cognição/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Cálcio/metabolismo , Comportamento de Escolha , Sinais (Psicologia) , Imageamento Tridimensional , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Odorantes , Optogenética , Substância Cinzenta Periaquedutal/fisiologia , Recompensa , Análise de Célula Única , Transcriptoma/genética
10.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32492405

RESUMO

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Potenciais de Ação/fisiologia , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Feminino , Células HEK293 , Homeostase/fisiologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Antígeno Neuro-Oncológico Ventral , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
11.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491388

RESUMO

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Dados Genéticas , Humanos , RNA-Seq/métodos
12.
Cell ; 178(1): 91-106.e23, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31178116

RESUMO

Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. Here, we use deep learning to predict APA from DNA sequence alone. We trained our model (APARENT, APA REgression NeT) on isoform expression data from over 3 million APA reporters. APARENT's predictions are highly accurate when tasked with inferring APA in synthetic and human 3'UTRs. Visualizing features learned across all network layers reveals that APARENT recognizes sequence motifs known to recruit APA regulators, discovers previously unknown sequence determinants of 3' end processing, and integrates these features into a comprehensive, interpretable, cis-regulatory code. We apply APARENT to forward engineer functional polyadenylation signals with precisely defined cleavage position and isoform usage and validate predictions experimentally. Finally, we use APARENT to quantify the impact of genetic variants on APA. Our approach detects pathogenic variants in a wide range of disease contexts, expanding our understanding of the genetic origins of disease.


Assuntos
Aprendizado Profundo , Modelos Genéticos , Poliadenilação/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Células HEK293 , Humanos , Mutagênese/genética , Clivagem do RNA/genética , RNA Mensageiro/genética , RNA-Seq , Biologia Sintética , Transcriptoma
13.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29551272

RESUMO

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Engenharia Genética/métodos , Engenharia de Proteínas/métodos , RNA/análise , Processamento Alternativo , Animais , Proteínas de Bactérias/metabolismo , Diferenciação Celular , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus/genética , Camundongos , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , Ruminococcus , Análise de Sequência de RNA , Transcriptoma
14.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078707

RESUMO

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Elementos Nucleotídeos Longos e Dispersos , Proteínas Associadas à Matriz Nuclear/química , Poliadenilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteínas de Ligação a RNA/química , RNA/química , Processamento Alternativo , Animais , Sítios de Ligação , Éxons , Células HeLa , Humanos , Íntrons , Camundongos , Mutação , Motivos de Nucleotídeos , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Splicing de RNA
15.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961578

RESUMO

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Assuntos
Surdez/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Processamento Alternativo/genética , Animais , Linhagem Celular , Éxons , Regulação da Expressão Gênica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiologia , Audição/genética , Audição/fisiologia , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Splicing de RNA/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição , Vorinostat/farmacologia
16.
Cell ; 172(1-2): 106-120.e21, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249356

RESUMO

Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.


Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Poliadenilação , Transdução de Sinais , Animais , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos
17.
Cell ; 175(6): 1492-1506.e19, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30449617

RESUMO

Approximately half of human genes generate mRNAs with alternative 3' untranslated regions (3'UTRs). Through 3'UTR-mediated protein-protein interactions, alternative 3'UTRs enable multi-functionality of proteins with identical amino acid sequence. While studying how information on protein features is transferred from 3'UTRs to proteins, we discovered that the broadly expressed RNA-binding protein TIS11B forms a membraneless organelle, called TIS granule, that enriches membrane protein-encoding mRNAs with multiple AU-rich elements. TIS granules form a reticular meshwork intertwined with the endoplasmic reticulum (ER). The association between TIS granules and the ER creates a subcellular compartment-the TIGER domain-with a biophysically and biochemically distinct environment from the cytoplasm. This compartment promotes 3'UTR-mediated interaction of SET with membrane proteins, thus allowing increased surface expression and functional diversity of proteins, including CD47 and PD-L1. The TIGER domain is a subcellular compartment that enables formation of specific and functionally relevant protein-protein interactions that cannot be established outside.


Assuntos
Regiões 3' não Traduzidas , Grânulos Citoplasmáticos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Fator 1 de Resposta a Butirato , Antígeno CD47/genética , Antígeno CD47/metabolismo , Grânulos Citoplasmáticos/genética , Drosophila melanogaster , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética
18.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29129375

RESUMO

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiões Promotoras Genéticas
19.
Cell ; 170(2): 324-339.e23, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709000

RESUMO

Alternative splicing (AS) patterns have diverged rapidly during vertebrate evolution, yet the functions of most species- and lineage-specific splicing events are not known. We observe that mammalian-specific AS events are enriched in transcript sequences encoding intrinsically disordered regions (IDRs) of proteins, in particular those containing glycine/tyrosine repeats that mediate formation of higher-order protein assemblies implicated in gene regulation and human disease. These evolutionary changes impact nearly all members of the hnRNP A and D families of RNA binding proteins. Regulation of these events requires formation of unusual, long-range mammalian-specific RNA duplexes. Differential inclusion of the alternative exons controls the formation of tyrosine-dependent multivalent hnRNP assemblies that, in turn, function to globally regulate splicing. Together, our results demonstrate that AS control of IDR-mediated interactions between hnRNPs represents an important and recurring mechanism underlying splicing regulation. Furthermore, this mechanism has expanded the regulatory capacity of mammalian cells.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Mamíferos/genética , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , Alinhamento de Sequência , Vertebrados/genética , Vertebrados/metabolismo
20.
Cell ; 170(2): 312-323.e10, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708999

RESUMO

Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox. This sequence spontaneously aggregates in solution to form fibrous structures and hydrogels, suggesting an assembly similar to the insoluble cellular inclusions formed by FUS and other proteins in neurologic disease. Unlike the pathological aggregates, we find that assembly of the Rbfox CTD plays an essential role in its normal splicing function. Rather than simple recruitment of individual regulators to a target exon, alternative splicing choices also depend on the higher-order assembly of these regulators within the nucleus.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Camundongos , Domínios Proteicos , Splicing de RNA , Alinhamento de Sequência , Fatores de Processamento de Serina-Arginina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA