Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(5): 1284-1307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33124893

RESUMO

Fruit peel is an agricultural by-product and potential source to extract natural aroma compounds with low cost. In the past few decades, the extraction of plant aroma volatiles experienced a transition from traditional to modern technologies. This review summarizes the main aroma compounds in different fruit peels, evaluates modern extraction techniques applicable for these aroma compounds in terms of mechanism, procedure, merits and demerits, and practice. Additionally, the applications of fruit peel aroma extract in food, pharmaceutical and cosmetic industries are also discussed. This review provides comprehensive information for extraction and application of aroma compounds from fruit peels, which could facilitate the valorization of the agricultural by-products and reduce environmental impacts.


Assuntos
Frutas , Compostos Orgânicos Voláteis , Odorantes
2.
Food Microbiol ; 97: 103763, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653514

RESUMO

A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source: ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.


Assuntos
Nitrogênio/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Etanol/metabolismo , Fermentação , Glicerol/metabolismo , Odorantes/análise , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise
3.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299536

RESUMO

The volatile thiol compound 3-sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc. 3SH is produced during fermentation by metabolism of non-volatile precursors such as 3-S-gluthathionylhexanal (glut-3SH-al). The biogenesis of 3SH is not fully understood, and the role of glut-3SH-al in this pathway is yet to be elucidated. The aldehyde functional group of glut-3SH-al is known to make this compound more reactive than other precursors to 3SH, and we are reporting for the first time that glut-3SH-al can exist in both keto and enol forms in aqueous solutions. At wine typical pH (~3.5), glut-3SH-al exists predominantly as the enol form. The dominance of the enol form over the keto form has implications in terms of potential consumption/conversion of glut-3SH-al by previously unidentified pathways. Therefore, this work will aid in the further elucidation of the role of glut-3SH-al towards 3SH formation in wine, with significant implications for the study and analysis of analogous compounds.


Assuntos
Compostos de Enxofre/metabolismo , Aldeídos/metabolismo , Fermentação/fisiologia , Hexanóis/metabolismo , Odorantes/análise , Compostos de Sulfidrila/metabolismo , Vitis/metabolismo , Vinho/análise
4.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525711

RESUMO

Monascus vinegar (MV), during whose brewing process Monascus spp. and polished rice (PR) are normally used as the starter and the raw material, respectively, is one of the traditional vinegars in China. In this study, the effects of three raw materials, including PR, unhusked rice (UR), and germinated UR (GR), on MV volatile compounds have been investigated. The results revealed that MV of GR (GMV), and its intermediate Monascus wine (GMW), exhibited the highest amount of aroma, not only in the concentrations but also in the varieties of the aromatic compounds mainly contributing to the final fragrance. Especially after three years of aging, the contents of benzaldehyde and furfural in GMV could reach to 13.93% and 0.57%, respectively, both of which can coordinate synergistically on enhancing the aroma. We also found that the filtering efficiency was significantly improved when UR and GR were applied as the raw materials, respectively. Therefore, GR might be more suitable raw materials for MV.


Assuntos
Ácido Acético/química , Monascus/química , Oryza/química , Compostos Orgânicos Voláteis/química , China , Fermentação/fisiologia , Odorantes/análise , Vinho
5.
Compr Rev Food Sci Food Saf ; 20(5): 4816-4840, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34370381

RESUMO

Specialty malts comprise a promising field for innovative approaches concerning their potential in terms of color, aroma, and taste influence on the composition of beer and other beverages. Nevertheless, poor reproducibility of aroma and taste is a recurrent struggle between maltsters, leaving color as a practical parameter for quality control. However, malts with similar coloration can present distinct aroma profiles, leaving open questions concerning key aroma compounds, their dynamic responses to malting process variations and to what extent they may vary in a certain color range. Key aroma volatiles have been identified in the matrix of barley malt, comprising a variety of products of non-enzymatic browning reactions (e.g., caramelization, pyrolysis, and Maillard reactions). Here, water plays a crucial role together with the intensity of the temperature regimes. Nevertheless, the final aroma profile of a malt product is the result of a balance between aroma formation and losses. Therefore, the correlation between color and aroma is of big complexity. That being the case, the present article questions if key aroma compounds responsible for the peculiar flavors of specialties have been defined by scientific literature and whether their production dynamics is unveiled. In this manner, this work proposes an overview of the aroma compounds present in specialty malt products studied up to the current date. More specifically, the process production of specialty malts and its potential impact on the formation of aroma and taste is studied alongside the key aroma-active compounds, their correlation to color, and trending analytical techniques for aroma and color assessment.


Assuntos
Hordeum , Odorantes , Cerveja/análise , Reação de Maillard , Odorantes/análise , Reprodutibilidade dos Testes
6.
Appl Microbiol Biotechnol ; 104(3): 1175-1186, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828406

RESUMO

Enterococcus faecium is frequently isolated from fermented food; in particular, they positively contribute to the aroma compound generation in traditional cheese. Citrate fermentation is a desirable property in these bacteria, but this feature is not uniformly distributed among E. faecium strains. In the present study, three selected E. faecium strains, IQ110 (cit-), GM70 (cit+ type I), and Com12 (cit+ type II), were analyzed in their production of aroma compounds in milk. End products and volatile organic compounds (VOCs) were determined by solid-phase micro-extraction combined with gas chromatography mass spectrometry (SPME-GC-MS). Principal component analysis (PCA) of aroma compound profiles revealed a different VOC composition for the three strains. In addition, resting cell experiments of E. faecium performed in the presence of leucine, citrate, or pyruvate as aroma compound precursors allowed us to determine metabolic differences between the studied strains. GM70 (cit+ type I) showed an active citrate metabolism, with increased levels of diacetyl and acetoin generation relative to Com12 or to citrate defective IQ110 strains. In addition, in the experimental conditions tested, a defective citrate-fermenting phenotype for the Com12 strain was found, while its leucine degradation and pyruvate metabolism were conserved. In conclusion, rational selection of E. faecium strains could be performed based on genotypic and phenotypic analyses. This would result in a performing strain, such as GM70, that could positively contribute to flavor, with typical notes of diacetyl, acetoin, 3-methyl butanal, and 3-methyl butanol in an adjuvant culture.


Assuntos
Ácido Cítrico/metabolismo , Enterococcus faecium/metabolismo , Leucina/metabolismo , Leite/química , Compostos Orgânicos Voláteis/metabolismo , Animais , Enterococcus faecium/genética , Fermentação , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Leite/microbiologia , Odorantes , Paladar
7.
J Dairy Sci ; 103(9): 7957-7967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684481

RESUMO

Despite intensive analyses of yogurt flavor, the synergistic effects of the key aroma compounds on sensory responses and their optimum concentration ranges remain less well-documented. This study investigated the odor thresholds, optimum concentration ranges, and perceptual actions of diacetyl, acetaldehyde, and acetoin in a yogurt matrix. Our results show that the odor thresholds of diacetyl, acetaldehyde, and acetoin in the yogurt matrix were 5.43, 15.4, and 29.0 mg/L, respectively, which were significantly higher than the corresponding values in water. The optimum diacetyl, acetaldehyde, and acetoin concentration ranges were found to be 6.65 to 9.12, 25.9 to 35.5, and 37.3 to 49.9 mg/L, respectively. In Feller's additive model, the addition of each compound led to a significant reduction in their odor threshold in the yogurt matrix, thus demonstrating the synergistic effects of the compounds. In the σ-τ plot, various concentrations of compounds were associated with various degrees of additive behavior with respect to the aroma intensity of the yogurt matrix, thus demonstrating the synergism among these compounds in increasing the overall aroma intensity. The optimal simultaneous concentration ratio of diacetyl:acetaldehyde:acetoin was determined to be 4.00:16.0:32.0 mg/L. The specific synergistic effects were also confirmed by an electronic nose analysis and aroma profile comparison. In summary, these 3 aroma compounds exhibited synergistic effects in a yogurt matrix, thus providing a theoretical basis for the enhancement of flavors in dairy products.


Assuntos
Acetaldeído/química , Acetoína/química , Diacetil/química , Aromatizantes/química , Odorantes , Iogurte/análise , Sinergismo Farmacológico , Nariz Eletrônico , Humanos , Olfato , Paladar
8.
J Dairy Sci ; 103(1): 242-253, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733845

RESUMO

Lactococcus lactis is the lactic acid bacteria most frequently used for the production of cheese starter cultures, mainly because of their efficient production of aroma compounds. However, commercial cultures do not always produce the typical aroma notes of artisanal raw-milk cheeses. Thus, the objective of this study was to characterize the volatile compounds generated by wild L. lactis strains in Mexican Fresco cheese made with pasteurized milk. Four strains of wild L. lactis were evaluated for their aroma production in Mexican Fresco cheese using sensory and instrumental analysis. The aroma profiles were evaluated by descriptive sensory analysis. Volatiles were determined by solid-phase microextraction and gas chromatography-mass spectrometry. Principal component analysis was applied to interpret analytical and sensory data. Mexican Fresco cheese aroma was described as milkfat, yogurt, yeasty, barny, dirty socks, and Fresco cheese. Cheese with L. lactis strains R7 or B7 were most similar to commercial raw milk Fresco cheese in all aroma descriptors. Volatiles identified in all cheeses were esters, acids, alcohols, ketones, and aldehydes, but the main differences were found for total volatile relative abundance. Also, volatile concentrations (µg/g) in commercial raw milk Fresco cheese and cheeses made with L. lactis R7 or B7 were 4 methyl esters [C4 (4.15 vs. 5.47-13.74), C6 (0.12 vs. 1.53-15.34), C8 (1.06 vs. 0.32-6.65), and C10 (0.62 vs. 0.41-3.74)], 7 acids [C4 (1.92 vs. 0.30-9.29), C6-C10 (0.05-4.48 vs. 0.11-30.45), and C12 (0.13 vs. 0.28-0.30)], 2 alcohols [(3-methyl-1-butanol (3.48 vs. 3.4-13.13) and phenylethyl alcohol (0.10 vs. 0.63-2.04)], and 1 ketone (acetoin; 1.22 vs. 0.28-0.99). The first 3 principal components explained 78.2% of the total variation and clearly distinguished 3 main groups. Cheese made with L. lactis R7 was classified in the same group as key compounds associated with Fresco cheese aroma and show potential as a starter in Mexican Fresco cheese manufacture.


Assuntos
Queijo/análise , Lactococcus lactis/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , México , Análise Multivariada , Microextração em Fase Sólida , Especificidade da Espécie
9.
J Dairy Sci ; 103(10): 8822-8828, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32773317

RESUMO

In this study, the effect of milk freezing was studied, focusing on the changes in 1% and 3% fat UHT hydrolyzed-lactose milk after slow- (-20°C) and fast-rate freezing (-80°C) for 72 h. Changes on the sensory properties were first assessed by discriminant analysis (triangle test), and then by volatile organic compounds and color analysis. The milk emulsion stability was characterized by optical centrifugation, particle size analysis, and confocal microscopy. The sensory panel was not able to distinguish the milk subjected to freezing from the control (72 h at 20°C). The volatile organic compounds and color analysis demonstrated that both freezing rates did not cause any significant changes in the milk aroma or color characteristics. The results of physical properties confirmed that short-time freezing did not lead to a distinct destabilization, except for a slight increase in the mean particle diameter at -80°C. Taking all the results together, UHT hydrolyzed-lactose milk was not significantly altered during the operation of freezing and thawing and, therefore, short-time freezing at both -20°C and -80°C can be used for milk storage without altering the product.


Assuntos
Manipulação de Alimentos , Congelamento , Leite , Paladar , Adulto , Animais , Feminino , Armazenamento de Alimentos , Temperatura Alta , Humanos , Hidrólise , Lactose , Masculino , Pessoa de Meia-Idade , Leite/química , Adulto Jovem
10.
J Dairy Sci ; 103(7): 5863-5873, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32448580

RESUMO

To evaluate the perceptual interactions among key aroma compounds found in milk fan, propanoic acid, butanoic acid, octanoic acid, octanal, nonanal, 2-nonanone, and ethyl hexanoate were analyzed by threshold values, aroma addition experiments (subthreshold), Feller's additive model (threshold), and σ-τ diagrams (threshold and superthreshold) at various concentrations. Aroma addition experiments highlighted that 7 key aroma compounds had significant effects on the aroma intensity of the sensory attributes of milk fan at the concentrations measured in a milk fan sample, and they might have synergistic effects with other compounds. The components of the 7 aroma compounds in binary mixtures showed synergistic effects from 21 binary mixtures by Feller's additive model. The components of 9 mixtures showed synergistic effects in the superadditive region (σ > 1.05), and 3 mixtures showed additive effects in the additive region (0.95 < σ < 1.05) of the σ-τ diagrams for all 168 binary mixtures. The results showed that perceptual interactions among the key aroma compounds in milk fan vary with different concentrations and threshold ratios. These results are helpful for further understanding the aroma of milk fan and improving the quality of its aroma.


Assuntos
Queijo/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa , Olfatometria
11.
Biosci Biotechnol Biochem ; 83(8): 1422-1427, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30582414

RESUMO

A new rule stipulates that wine made in Japan from grapes harvested in Japan be labeled as "Japan wine". The main grape varieties for Japan Wine, Koshu for white wine and Muscat Bailey A for red, are unique to Japan. Koshu is native to Japan and its origin, long unknown, has recently been revealed through DNA analysis. Wine made from this variety suffered from a lack of characteristic aroma, but a recent study has demonstrated its potential for producing wine with a citrus scent. Muscat Bailey A was bred in Japan. Its characteristic sweet aroma has been identified as being due to furaneol. Another characteristic of its wine is that it has a low concentration of proanthocyanidins (condensed tannin), and the reason for this was revealed recently. These and other studies have been conducted in wine companies, universities, and research institutes in Japan and support the development of Japan Wine. Abbreviations: SSR: simple sequence repeat; SNP: single nucleotide polymorphism; 3MH: 3-mercaptohexan-1-ol; 4-HDMF: 4-hydroxy-2,5-dimethyl-3(2H)-furanone; PCA: principal component analysis.


Assuntos
Bebidas Alcoólicas , Oryza/metabolismo , DNA de Plantas/genética , Japão , Repetições de Microssatélites , Oryza/genética , Proantocianidinas/metabolismo
12.
Mikrochim Acta ; 186(3): 182, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771004

RESUMO

An efficient and rapid fluorescent nanoprobe is described for the determination of the aroma compound 4-ethylguaiacol (4-EG). A molecularly imprinted polymer was doped with a covalent organic framework (COF) grafted onto carbon nanodots that was prepared by one-pot reverse microemulsion polymerization. Amino groups at the surface of carbon nanodots coordinate to the COFs to produce a strong bond and this warrants thermal and chemical stability of the probe. Remaining free amino groups interact with the phenolic hydroxyl groups of 4-EG through acid-base pairing interactions. The probe, with excitation/emission maxima at 350/440 nm, responds to 4-EG due to the charge transfer to the carbon nanodots. Under optimized conditions, fluorescence drops linearly as the concentrations of 4-EG increase from 0.025 to 1 µg mL-1, with a detection limit of 17 ng mL-1. The probe was applied to the determination of 4-ethylguaiacol in Chinese Baijiu and wine samples after pretreatment by a single dilution step. The recoveries of spiked samples ranged from 78.4to 110.1%. Graphical abstract Schematic presentation of the synthesis of a fluorescent nanoprobe based on molecularly imprinted polymers doped with covalent organic framework grafted onto carbon nanodots. It was used as an efficient and rapid nanoprobe for 4-ethylguaiacol detection with high selectivity and sensitivity.

13.
J Sci Food Agric ; 99(8): 4123-4128, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30761541

RESUMO

BACKGROUND: Cheese ripening involves a complex series of metabolic reactions and numerous concomitant secondary transformations. Alcohol dehydrogenase (ADH) converts aldehydes into their corresponding alcohols, which enrich cheese aroma. RESULTS: In this study, we identified five ADH genes in Proteus mirabilis JN458, and these genes were overexpressed and characterized in Escherichia coli BL21 (DE3). The optimum pH was 7.0 for the purified recombinant ADH-1, ADH-2, and ADH-3 and 8.0 for ADH-4 and ADH-5. The optimum temperature was 40 °C for ADH-1, ADH-3, and ADH-5 and 45 °C for ADH-2 and ADH-4. The Km value of ADH-1, ADH-2, and ADH-3 was 34.45, 16.90, and 10.01 µmol L-1 for phenylacetaldehyde, respectively. The Km value of ADH-4 and ADH-5 was 14.81 and 24.62 µmol L-1 for 2-methylbutanal, respectively. CONCLUSION: Proteus species play important roles during cheese ripening. The results of our study are important for further research on cheese flavor and for quality control during cheese production. © 2019 Society of Chemical Industry.


Assuntos
Álcool Desidrogenase/metabolismo , Álcoois/metabolismo , Proteínas de Bactérias/metabolismo , Queijo/microbiologia , Aromatizantes/química , Proteus mirabilis/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Álcoois/análise , Aldeídos/química , Aldeídos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bovinos , Queijo/análise , Estabilidade Enzimática , Fermentação , Aromatizantes/metabolismo , Microbiologia de Alimentos , Humanos , Cinética , Leite/química , Leite/microbiologia , Odorantes/análise , Proteus mirabilis/química , Proteus mirabilis/genética , Proteus mirabilis/metabolismo , Paladar
14.
Biosci Biotechnol Biochem ; 81(1): 168-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27691841

RESUMO

The cooked meat-like aroma compound, 2-methyl-3-furanthiol (2M3F), was detected in fermented soy sauce (FSS) by GC-olfactometry and GC-MS. 2M3F was present in FSS at a concentration considerably greater than the perception threshold, and the 2M3F concentration increased with heating temperature. Sensory analysis indicated that with the addition of only 0.2 µg/L of 2M3F to the soy sauce sample, the cooked meat-like aroma is significantly stronger than that of sample without the addition of 2M3F. Hence, 2M3F contributes to the cooked meat-like aroma of FSS, which constitutes the key aroma component of FSS. In addition, 2M3F was generated from the addition of ribose and cysteine in FSS by heating at 120 °C, but it was not detected in a phosphate buffer under the same condition. Furthermore, 2M3F was not detected in acid-hydrolyzed vegetable-protein-mixed soy sauce (ASS) and heated ASS. These results indicated that fermentation by micro-organisms facilitates the generation of 2M3F in FSS.


Assuntos
Culinária , Fermentação , Furanos/análise , Carne , Odorantes/análise , Alimentos de Soja/análise , Compostos de Sulfidrila/análise , Temperatura Alta
15.
J Dairy Sci ; 99(4): 2502-2511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26852809

RESUMO

Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content.


Assuntos
Queijo/microbiologia , Pseudomonas fragi/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio/química , Animais , Aminas Biogênicas/análise , Queijo/análise , Cinética , Proteólise , Pseudomonas fragi/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise
16.
Biotechnol Appl Biochem ; 62(6): 772-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496188

RESUMO

Carotenoids are key precursor for aroma compounds in plants. Although the fruit of Lycium chinense contains numerous carotenoids, the formation mechanism of aroma compounds in L. chinense is still poorly understood. In this study, a new carotenoid cleavage dioxygenase (termed LmCCD1) was identified from the leaves of L. chinense. Expression analysis by semiquantitative PCR reveals that LmCCD1 gene is expressed in different tissues of L. chinense, and dominant expression of LmCCD1 gene was found in leaves, flowers, and ripe fruits. In addition, the expression level of LmCCD1 in fruits is in accordance with the content of ß-ionone. Finally, recombinantly expressed LmCCD1 can cleave ß-carotene and lycopene to produce ß-ionone and pseudoionone in in vitro assays. These results indicate that LmCCD1 a novel carotenoids cleavage dioxygenase gene that may regulate the metabolic pathways responsible for aroma metabolite production (such as ß-ionone and pseudoionone) in L. chinense has been identified.


Assuntos
Dioxigenases/genética , Dioxigenases/metabolismo , Lycium/enzimologia , Lycium/genética , Sequência de Aminoácidos , Clonagem Molecular , Dioxigenases/química , Dioxigenases/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Lycium/metabolismo , Dados de Sequência Molecular , Compostos Orgânicos Voláteis/metabolismo
17.
Biosci Biotechnol Biochem ; 78(1): 124-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036494

RESUMO

The aroma extract dilution analysis of an extract prepared from pork stock and subsequent experiments led to the identification of 15 aroma-active compounds in the flavor dilution factor range of 64-2048. Omission experiments to select the most aroma-active compounds from the 15 odor compounds suggested acetol, octanoic acid, δ-decalactone, and decanoic acid as the main active compounds contributing to the aroma of pork stock. Aroma recombination, addition, and omission experiments of these four aroma compounds in taste-reconstituted pork stock showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombined mixture and pork stock showed strong similarity, suggesting that the key aroma compounds had been successfully identified.


Assuntos
Manipulação de Alimentos , Carne/análise , Odorantes/análise , Suínos , Animais , Volatilização
18.
J Oleo Sci ; 73(4): 503-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556284

RESUMO

This study was investigated the effect of adding fat to pork sausage on taste and aroma persistence. Sensory evaluation indicated that increasing fat content intensified umami and saltiness perception, enhancing the mouthfulness and flavor persistence, leading to Koku enhancing effect. Gas chromatography/mass spectrometry (GC/MS) analysis identified aroma compounds such as ß-pinene, 3-carene, D-limonene, octanal, nonanal, caryophyllene, and methyl eugenol, which were consistently present regardless of fat content. These aroma compounds were less likely to be released as the fat content increased. Furthermore, the release of these aroma compounds from the sausage with addition of fat was larger than that without addition of fat in the presence of saline, indicating that the added fat retained these aroma compounds and released them in the presence of saline. This suggests that sausages with added fat release more aroma compounds during consumption, resulting in a more intense flavor and flavor persistence of Koku perception. These seven compounds detected in pork sausage were found to be easily retained by cholesterol and lecithin, likely due to differences in their log P values (octanol/water partition coefficients), which were greater than 3.


Assuntos
Carne de Porco , Carne Vermelha , Compostos Orgânicos Voláteis , Animais , Suínos , Paladar , Carne Vermelha/análise , Carne de Porco/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Percepção , Lipídeos
19.
Food Chem ; 449: 138970, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653141

RESUMO

Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.


Assuntos
Bactérias , Crassostrea , Fermentação , Aromatizantes , Paladar , Animais , Crassostrea/microbiologia , Crassostrea/metabolismo , Crassostrea/química , Aromatizantes/metabolismo , Aromatizantes/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Fungos/metabolismo , Fungos/classificação , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Frutos do Mar/análise , Frutos do Mar/microbiologia
20.
Food Res Int ; 194: 114883, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232555

RESUMO

In this research, accelerated aroma release experiments and malvidin-3-O-glucoside copigmentation experiments in model red wine solutions were designed to investigate the abilities and molecular mechanisms of mannoproteins in modulating olfactory/chromatic properties of red wines. Results indicate that under orthonasal condition, mannoprotein MP2 was promising aroma modulator due to its predictable behaviors in expelling and retaining the aroma compounds during different periods. Low field nuclear magnetic resonance and molecular dynamic simulation proved that the modulation ability of MP2 should be explained by its transitionary interacting preferences with water/aroma compound molecules. Retronasal results show that the release of aroma compounds and olfactory perceptions were irregular and difficult to predict, probably due to the complexity of the retronasal condition. All mannoproteins protected malvidin-3-O-glucoside and quercetin via the formation of binary/ternary complexes, and quercetin was found prior to be protected than malvidin-3-O-glucoside. Principal mannoprotein A0A6C1DV26 might be the critical malvidin-3-O-glucoside protector. With the presence of quercetin, principal mannoproteins B3LQU1/B5VL26 in mannoprotein MP1 might exhibit intramolecular and/or intermolecular mechanisms that strengthened the hyperchromic effect, thus enhanced the copigmentation.


Assuntos
Antocianinas , Glucosídeos , Glicoproteínas de Membrana , Vinho , Vinho/análise , Glucosídeos/química , Glicoproteínas de Membrana/metabolismo , Antocianinas/química , Odorantes/análise , Quercetina/química , Percepção Olfatória , Simulação de Dinâmica Molecular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA