Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(26): e2207272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942900

RESUMO

Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.

2.
Small ; 19(41): e2304108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317013

RESUMO

Transition metal-nitrogen-carbon materials with atomically dispersed active sites are promising catalysts for oxygen evolution reaction (OER) since they combine the strengths of both homogeneous and heterogeneous catalysts. However, the canonically symmetric active site usually exhibits poor OER intrinsic activity due to its excessively strong or weak oxygen species adsorption. Here, a catalyst with asymmetric MN4 sites based on the 3-s-triazine of g-C3 N4 (termed as a-MN4 @NC) is proposed. Compared to symmetric, the asymmetric active sites directly modulate the oxygen species adsorption via unifying planar and axial orbitals (dx2 -y2 , dz2 ), thus enabling higher OER intrinsic activity. In Silico screening suggested that cobalt has the best OER activity among familiar nonprecious transition metal. These experimental results suggest that the intrinsic activity of asymmetric active sites (179 mV overpotential at onset potential) is enhanced by 48.4% compared to symmetric under similar conditions. Remarkably, a-CoN4 @NC showed excellent activity in alkaline water electrolyzer (AWE) device as OER catalyst, the electrolyzer only required 1.7 V and 2.1 V respectively to reach the current density of 150 mA cm-2 and 500 mA cm-2 . This work opens an avenue for modulating the active sites to obtain high intrinsic electrocatalytic performance including, but not limited to, OER.

3.
Nano Lett ; 22(7): 2889-2897, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35315667

RESUMO

Atomically dispersed catalysts are a new type of material in the field of catalysis science, yet their large-scale synthesis under mild conditions remains challenging. Here, a general synergistic capture-bonding superassembly strategy to obtain atomically dispersed Pt (Ru, Au, Pd, Ir, and Rh)-based catalysts on micropore-vacancy frameworks at a mild temperature of 60 °C is reported. The precise capture via narrow pores and the stable bonding of vacancies not only simplify the synthesis process of atomically dispersed catalysts but also realize their large-scale preparation at mild temperature. The prepared atomically dispersed Pt-based catalyst possesses a promising electrocatalytic activity for hydrogen evolution, showing an activity (at overpotential of 50 mV) about 21.4 and 20.8 times higher than that of commercial Pt/C catalyst in 1.0 M KOH and 0.5 M H2SO4, respectively. Besides, the extremely long operational stability of more than 100 h provides more potential for its practical application.

4.
Angew Chem Int Ed Engl ; 60(37): 20528-20534, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34263519

RESUMO

Rational control of the coordination environment of atomically dispersed catalysts is pivotal to achieve desirable catalytic reactivity. We report the reversible control of coordination structure in atomically dispersed electrocatalysts via ligand exchange reactions to reversibly modulate their reactivity for oxygen reduction reaction (ORR). The CO-ligated atomically dispersed Rh catalyst exhibited ca. 30-fold higher ORR activity than the NHx -ligated catalyst, whereas the latter showed three times higher H2 O2 selectivity than the former. Post-treatments of the catalysts with CO or NH3 allowed the reversible exchange of CO and NHx ligands, which reversibly tuned oxidation state of metal centers and their ORR activity and selectivity. DFT calculations revealed that more reduced oxidation state of CO-ligated Rh site could further stabilize the *OOH intermediate, facilitating the two- and four-electron pathway ORR. The reversible ligand exchange reactions were generalized to Ir- and Pt-based catalysts.

5.
Small ; 16(42): e2003904, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32996272

RESUMO

Iron-based catalysts have been widely studied for the oxidation of H2 S into elemental S. However, the prevention of iron sites from deactivation remains a big challenge. Herein, a facile copolymerization strategy is proposed for the construction of isolated Fe sites confined in polymeric carbon nitride (CN) (Fe-CNNχ). The as-prepared Fe-CNNχ catalysts possess unique 2D structure as well as electronic property, resulting in enlarged exposure of active sites and enhancement of redox performance. Combining systematic characterizations with density functional theory calculation, it is disclosed that the isolated Fe atoms prefer to occupy four-coordinate doping configurations (Fe-N4 ). Such Fe-N4 centers favor the adsorption and activation of O2 and H2 S. As a consequence, Fe-CNNχ exhibit excellent catalytic activity for the catalytic oxidation of H2 S to S. More importantly, the Fe-CNNχ catalysts are resistant to water and sulfur poisoning, exhibiting outstanding catalytic stability (over 270 h of continuous operation), better than most of the reported catalysts.

6.
Adv Mater ; 35(46): e2302666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548180

RESUMO

Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2  in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.

7.
Small Methods ; 7(7): e2300121, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37002182

RESUMO

This study adopts a facile and effective in situ encapsulation-oxidation strategy for constructing a coupling catalyst composed of atomically dispersed Pt-doped Co3 O4 spinel nanoparticles (NPs) embedded in polyhedron frames (PFs) for robust propane total oxidation. Benefiting from the abundant oxygen vacancies and more highly valent active Co3+ species caused by the doping of Pt atoms as well as the confinement effect, the optimized 0.2Pt-Co3 O4 NPs/PFs catalyst exhibits excellent propane catalytic activity with low T90 (184 °C), superior apparent reaction rate (21.62×108 (mol gcat -1 s-1 )), low apparent activation energy (Ea = 17.89 kJ mol-1 ), high turnover frequency ( 811×107 (mol gcat -1 s-1 )) as well as good stability. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations indicate that the doping of Pt atoms enhances the oxygen activation ability, and decreases the energy barrier required for CH bond breaking, thus improving the deep oxidation process of the intermediate species. This study opens up new ideas for constructing coupling catalysts from atomic scale with low cost to enhance the activation of oxygen molecules and the deep oxidation of linear short chain alkanes at low temperature.

8.
Natl Sci Rev ; 9(1): nwab026, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111329

RESUMO

Synthesis of atomically dispersed catalysts with high metal loading and thermal stability is challenging but particularly valuable for industrial application in heterogeneous catalysis. Here, we report a facile synthesis of a thermally stable atomically dispersed Ir/α-MoC catalyst with metal loading as high as 4 wt%, an unusually high value for carbide supported metal catalysts. The strong interaction between Ir and the α-MoC substrate enables high dispersion of Ir on the α-MoC surface, and modulates the electronic structure of the supported Ir species. Using quinoline hydrogenation as a model reaction, we demonstrate that this atomically dispersed Ir/α-MoC catalyst exhibits remarkable reactivity, selectivity and stability, for which the presence of high-density isolated Ir atoms is the key to achieving high metal-normalized activity and mass-specific activity. We also show that the water-promoted quinoline hydrogenation mechanism is preferred over the Ir/α-MoC, and contributes to high selectivity towards 1,2,3,4-tetrahydroquinoline. The present work demonstrates a new strategy in constructing a high-loading atomically dispersed catalyst for the hydrogenation reaction.

9.
ACS Appl Mater Interfaces ; 13(13): 15113-15121, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33757285

RESUMO

In the study of heterogeneity of homogeneous processes, effective control of the microenvironment of active sites is a reliable means to improve the selectivity of products. Here, we develop a high-performance Rh-based atomically dispersed catalyst for olefin hydroformylation by controlling the electronic environment and spatial distribution of active metals on the supports, which is achieved through wet impregnation of Rh on ZnO modified with Pi and Co. Various characterizations demonstrate that Co weakens Rh-CO interactions and Pi promotes the formation of atomically dispersed Rh, which thereby improves the selectivity of linear aldehydes in hydroformylation. This strategy of rationally designing the local microenvironment of active metals is important to optimize the catalytic performance.

10.
Adv Mater ; 33(50): e2006159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33829578

RESUMO

The interfaces between inorganic functional nanomaterials and their surface modifiers play important roles in determining their chemical and physical properties. In numerous situations, interfaces created by organic ligands or secondary inorganic components on inorganic nanomaterials induce significant effects to promote their performances. However, it still remains challenging to understand those interfacial effects at the molecular level. Herein, strategies via the design of model inorganic nanomaterials with well-defined and detectable interfaces to simplify the investigation of interfacial effects in inorganic nanomaterials are summarized. While atomically precise metal nanoclusters enable "seeing" how organic ligands are coordinated on metal surface to create nanoscale metal-organic interfaces, ultrathin low-dimensional nanomaterials modified with organic ligands make it possible to extract the metal-organic interface structure from the average signal to investigate how steric and electronic effects enhance catalysis. The molecular mechanisms of the interfacial effects in supported metal catalysts are disclosed by designing two unique structures of supported catalysts. The interfacial engineering approach will be further extended to optimize the performance and stability of perovskite solar cells. Finally, a perspective on the development of operando characterization techniques is provided to track the dynamic interfacial structures during catalysis.

11.
ACS Nano ; 14(2): 1990-2001, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31999424

RESUMO

Atomically dispersed precious metal catalysts have emerged as a frontier in catalysis. However, a robust, generic synthetic strategy toward atomically dispersed catalysts is still lacking, which has limited systematic studies revealing their general catalytic trends distinct from those of conventional nanoparticle (NP)-based catalysts. Herein, we report a general synthetic strategy toward atomically dispersed precious metal catalysts, which consists of "trapping" precious metal precursors on a heteroatom-doped carbonaceous layer coated on a carbon support and "immobilizing" them with a SiO2 layer during thermal activation. Through the "trapping-and-immobilizing" method, five atomically dispersed precious metal catalysts (Os, Ru, Rh, Ir, and Pt) could be obtained and served as model catalysts for unravelling catalytic trends for the oxygen reduction reaction (ORR). Owing to their isolated geometry, the atomically dispersed precious metal catalysts generally showed higher selectivity for H2O2 production than their NP counterparts for the ORR. Among the atomically dispersed catalysts, the H2O2 selectivity was changed by the types of metals, with atomically dispersed Pt catalyst showing the highest selectivity. A combination of experimental results and density functional theory calculations revealed that the selectivity trend of atomically dispersed catalysts could be correlated to the binding energy difference between *OOH and *O species. In terms of 2 e- ORR activity, the atomically dispersed Rh catalyst showed the best activity. Our general approach to atomically dispersed precious metal catalysts may help in understanding their unique catalytic behaviors for the ORR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA