Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 551-576, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30485755

RESUMO

Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Animais , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272288

RESUMO

KdpFABC is an oligomeric K+ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K+ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K+ or water and which define a pathway for K+ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K+ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K+ to the cytoplasm.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transporte de Íons , Proteínas de Membrana/genética , Modelos Moleculares , Óperon , Potássio/metabolismo
3.
Angew Chem Int Ed Engl ; : e202410420, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961660

RESUMO

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

4.
J Biol Chem ; 298(2): 101505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929170

RESUMO

Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane-based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s-1) and for sugar translocation (2 s-1 - 30 s-1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monossacarídeos , Simportadores , Metabolismo dos Carboidratos , Eletrofisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Açúcares/metabolismo , Simportadores/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(49): 31166-31176, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229520

RESUMO

Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.


Assuntos
Actinobacteria/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Trocadores de Sódio-Hidrogênio/ultraestrutura , Actinobacteria/química , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/química , Oxirredução , Bombas de Próton/química , Bombas de Próton/genética , Bombas de Próton/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
6.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269783

RESUMO

Herein, we report a novel whole-cell screening assay using Lactobacillus casei as a model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system. Based on this new whole-cell screening approach, we demonstrated the optimization of a weak hit compound (2) into a small molecule (3) with improved in vitro and whole-cell activities. This study opens the possibility to quickly identify novel inhibitors of ECF transporters and optimize them based on structure-activity relationships.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares
7.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012762

RESUMO

Membrane pyrophosphatases (mPPases) found in plant vacuoles and some prokaryotes and protists are ancient cation pumps that couple pyrophosphate hydrolysis with the H+ and/or Na+ transport out of the cytoplasm. Because this function is reversible, mPPases play a role in maintaining the level of cytoplasmic pyrophosphate, a known regulator of numerous metabolic reactions. mPPases arouse interest because they are among the simplest membrane transporters and have no homologs among known ion pumps. Detailed phylogenetic studies have revealed various subtypes of mPPases and suggested their roles in the evolution of the "sodium" and "proton" bioenergetics. This treatise focuses on the mechanistic aspects of the transport reaction, namely, the coupling step, the role of the chemically produced proton, subunit cooperation, and the relationship between the proton and sodium ion transport. The available data identify H+-PPases as the first non-oxidoreductase pump with a "direct-coupling" mechanism, i.e., the transported proton is produced in the coupled chemical reaction. They also support a "billiard" hypothesis, which unifies the H+ and Na+ transport mechanisms in mPPase and, probably, other transporters.


Assuntos
Difosfatos , Pirofosfatases , Difosfatos/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Filogenia , Probabilidade , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo
8.
Eur J Neurosci ; 54(9): 7141-7151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34550613

RESUMO

Spatial integration during the brain's cognitive activity prompts changes in energy used by different neuroglial populations. Nevertheless, the organisation of such integration in 3D -brain activity remains undescribed from a quantitative standpoint. In response, we applied a cross-correlation between brain activity and integrative models, which yielded a deeper understanding of information integration in functional brain mapping. We analysed four datasets obtained via fundamentally different neuroimaging techniques (functional magnetic resonance imaging [fMRI] and positron emission tomography [PET]) and found that models of spatial integration with an increasing input to each step of integration were significantly more correlated with brain activity than models with a constant input to each step of integration. In addition, marking the voxels with the maximal correlation, we found exceptionally high intersubject consistency with the initial brain activity at the peaks. Our method demonstrated for the first time that the network of peaks of brain activity is organised strictly according to the models of spatial integration independent of neuroimaging techniques. The highest correlation with models integrating an increasing at each step input suggests that brain activity reflects a network of integrative processes where the results of integration in some neuroglial populations serve as an input to other neuroglial populations.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neuroimagem
9.
Metab Eng ; 65: 243-254, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279674

RESUMO

Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sacarose , Transporte Biológico/genética , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Biol Phys ; 47(4): 401-433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34792702

RESUMO

The dynamics of ion translocation through membrane transporters is visualized from a comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations have been performed with the Kirkwood-Tanford-Warshel (KTW) electrostatic theory that properly takes into account the self-energies of the ions. The Gibbs energy landscapes for translocation of a single charge and an ion pair are calculated, compared, and contrasted as a function of the order parameter, and the characteristics of the frustrated system with bistability for the ion pair are described and quantified in considerable detail. These calculations have been compared with experimental data on the ΔG of ion pairs in proteins. It is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost completely compensated by the sum of the electrostatic energy of the charge-charge interactions and the solvation energy of the ion pair. The maxima in ΔGKTW with interionic distance in the bound H+ - A- charge pair on the enzyme is interpreted in thermodynamic and molecular mechanistic terms, and biological implications for molecular mechanisms of ATP synthesis are discussed. The timescale at which the order parameter moves between two stable states has been estimated by solving the dynamical equations of motion, and a wealth of novel insights into energy transduction during ATP synthesis by the membrane-bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical framework that integrates physics, chemistry, and biology has been developed for ion translocation by membrane transporters for the first time by means of a Gibbs energy landscape approach.


Assuntos
Trifosfato de Adenosina , Proteínas de Membrana Transportadoras , Biologia , Íons , Física , Termodinâmica
11.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575984

RESUMO

Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a "direct coupling" mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell's direct coupling with conformational coupling to catalyze cation transport across the membrane.


Assuntos
Catálise , Difosfatos/química , Pirofosfatase Inorgânica/química , Canais Iônicos/química , Membrana Celular/enzimologia , Dimerização , Hidrólise , Canais Iônicos/genética , Transporte de Íons/genética , Cinética , Potássio/química , Prótons , Pirofosfatases
12.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884707

RESUMO

Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a 'rigid body'-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14-19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.


Assuntos
Pirofosfatase Inorgânica/química , Proteínas de Plantas/metabolismo , Vacúolos/enzimologia , Vigna/enzimologia , Sequência de Aminoácidos , Catálise , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Transporte de Íons , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577099

RESUMO

Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Fosfolipídeos/química , Transporte Biológico , Biotecnologia , Humanos
14.
Subcell Biochem ; 92: 223-274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214989

RESUMO

The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Açúcares/metabolismo , Transporte Biológico , Fosforilação
15.
Adv Exp Med Biol ; 1163: 141-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707703

RESUMO

With the increasing difficulty to develop new drugs and the emergence of resistance to traditional orthosteric-site inhibitors, the search for alternatives is finally approaching the focus on allosteric sites. Allosteric sites offer opportunities to regulate many pharmacologically targeted pathways by inhibition or activation. In addition, allosteric sites tend to be less conserved than the functional site, which may facilitate the design of specific effectors in the protein families for which specific orthosteric inhibitors have proved difficult to design. Furthermore, recent evidence suggests that all proteins might be susceptible of allosteric regulation, increasing the space of druggable targets. Computational identification of allosteric sites has therefore become an active field of research. The problem can be approached from two sides: (1) the identification of allosteric-communication pathways between the functional site and potential allosteric sites and (2) the functional-site-independent identification of allosteric sites. While the first approach tends to be more laborious and thus restricted to a single protein, the second tends to be more amenable to larger-scale analysis, thus providing tools for the two drug discovery scenarios: the analysis of known targets and the screening for new potential targets. Here, I show some basic concepts and methods useful to the identification of allosteric sites and pathways, in line with these two approaches. I describe them in some detail to build a clear framework, at the risk of losing the interest of experts. Examples of recent studies involving these methods are also illustrated, focusing on the techniques rather than on their findings on allosterism.


Assuntos
Sítio Alostérico , Descoberta de Drogas , Proteínas , Regulação Alostérica , Descoberta de Drogas/tendências , Proteínas/química
16.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661895

RESUMO

Kinetic models have been employed to understand the logic of substrate transport through transporters of the Solute Carrier (SLC) family. All SLC transporters operate according to the alternate access model, which posits that substrate transport occurs in a closed loop of partial reactions (i.e., a transport cycle). Kinetic models can help to find realistic estimates for conformational transitions between individual states of the transport cycle. When constrained by experimental results, kinetic models can faithfully describe the function of a candidate transporter at a pre-steady state. In addition, we show that kinetic models can accurately predict the intra- and extracellular substrate concentrations maintained by the transporter at a steady state, even under the premise of loose coupling between the electrochemical gradient of the driving ion and of the substrate. We define the criteria for the design of a credible kinetic model of the SLC transporter. Parsimony is the guiding principle of kinetic modeling. We argue, however, that the level of acceptable parsimony is limited by the need to account for the substrate gradient established by a secondary active transporter, and for random order binding of co-substrates and substrate. Random order binding has consistently been observed in transporters of the SLC group.


Assuntos
Serotonina/metabolismo , Sódio/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Transporte Biológico , Íons/química , Cinética , Modelos Biológicos , Sódio/química , Termodinâmica
17.
Entropy (Basel) ; 21(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33267460

RESUMO

Starting from the universal concept of entropy production, a large number of new results are obtained and a wealth of novel thermodynamic, kinetic, and molecular mechanistic insights are provided into the coupling of oxidation and ATP synthesis in the vital process of oxidative phosphorylation (OX PHOS). The total dissipation, Φ , in OX PHOS with succinate as respiratory substrate is quantified from measurements, and the partitioning of Φ into the elementary components of ATP synthesis, leak, slip, and other losses is evaluated for the first time. The thermodynamic efficiency, η , of the coupled process is calculated from the data on Φ and shown to agree well with linear nonequilibrium thermodynamic calculations. Equations for the P/O ratio based on total oxygen consumed and extra oxygen consumed are derived from first principles and the source of basal (state 4) mitochondrial respiration is postulated from molecular mechanistic considerations based on Nath's two-ion theory of energy coupling within the torsional mechanism of energy transduction and ATP synthesis. The degree of coupling, q , between oxidation and ATP synthesis is determined from the experimental data and the irreversible thermodynamics analysis. The optimality of biological free energy converters is explored in considerable detail based on (i) the standard biothermodynamic approach, and (ii) a new biothermokinetic approach developed in this work, and an effective solution that is shown to arise from consideration of the molecular aspects in Nath's theory is formulated. New experimental data in state 4 with uncouplers and redox inhibitors of OX PHOS and on respiratory control in the physiological state 3 with ADP and uncouplers are presented. These experimental observations are shown to be incompatible with Mitchell's chemiosmotic theory. A novel scheme of coupling based on Nath's two-ion theory of energy coupling within the torsional mechanism is proposed and shown to explain the data and also pass the test of consistency with the thermodynamics, taking us beyond the chemiosmotic theory. It is concluded that, twenty years since its first proposal, Nath's torsional mechanism of energy transduction and ATP synthesis is now well poised to catalyze the progress of experimental and theoretical research in this interdisciplinary field.

18.
Biochem Soc Trans ; 45(3): 813-829, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620043

RESUMO

Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem-copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Animais , Transporte de Elétrons , Eucariotos/enzimologia , Humanos , Modelos Moleculares , Oxigênio/metabolismo , Conformação Proteica
19.
Proc Natl Acad Sci U S A ; 111(52): 18560-5, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512487

RESUMO

Energy-coupling factor (ECF) transporters are a unique group of ATP-binding cassette (ABC) transporters responsible for micronutrient uptake from the environment. Each ECF transporter is composed of an S component (or EcfS protein) and T/A/A' components (or EcfT/A/A' proteins; ECF module). Among the group II ECF transporters, several EcfS proteins share one ECF module; however, the underlying mechanism remains unknown. Here we report the structure of a group II ECF transporter-pantothenate transporter from Lactobacillus brevis (LbECF-PanT), which shares the ECF module with the folate and hydroxymethylpyrimidine transporters (LbECF-FolT and LbECF-HmpT). Structural and mutational analyses revealed the residues constituting the pantothenate-binding pocket. We found that although the three EcfS proteins PanT, FolT, and HmpT are dissimilar in sequence, they share a common surface area composed of the transmembrane helices 1/2/6 (SM1/2/6) to interact with the coupling helices 2/3 (CH2/3) of the same EcfT. CH2 interacts mainly with SM1 via hydrophobic interactions, which may modulate the sliding movement of EcfS. CH3 binds to a hydrophobic surface groove formed by SM1, SM2, and SM6, which may transmit the conformational changes from EcfA/A' to EcfS. We also found that the residues at the intermolecular surfaces in LbECF-PanT are essential for transporter activity, and that these residues may mediate intermolecular conformational transmission and/or affect transporter complex stability. In addition, we found that the structure of EcfT is conformationally dynamic, which supports its function as a scaffold to mediate the interaction of the ECF module with various EcfS proteins to form different transporter complexes.


Assuntos
Proteínas de Bactérias/química , Levilactobacillus brevis/química , Simportadores/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Simportadores/genética , Simportadores/metabolismo
20.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208745

RESUMO

Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer's disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer's disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Homeostase , Doenças Neurodegenerativas/metabolismo , Vesículas Transportadoras/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Atrofia , Comunicação Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Neocórtex/metabolismo , Neocórtex/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA