Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096159

RESUMO

Monogenic kidney diseases result from an abundance of potential genes carrying pathogenic variants. These conditions are primarily recognized for manifesting as kidney disorders, defined as an impairment of the structure and/or function of the kidneys. However, the impact of these genetic disorders extends far beyond the kidneys, giving rise to a diverse spectrum of extrarenal manifestations. These manifestations can affect any organ system throughout the body, leading to a complex clinical presentation that demands a comprehensive understanding and interdisciplinary management of affected persons. The intricate interplay between genetic variants, molecular pathways, and systemic interactions underscores the importance of exploring the extrarenal aspects of inherited kidney diseases. This exploration not only deepens our comprehension of the diseases themselves but also opens avenues for more holistic diagnostics, treatment strategies, and improved interdisciplinary patient care. This article delves into the intricate realm of extrarenal manifestations in inherited kidney diseases, shedding light on the far-reaching impacts that these genetic conditions can exert beyond the confines of the kidney system.

2.
Clin Exp Nephrol ; 27(9): 737-746, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254000

RESUMO

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by insufficient α-galactosidase A (GLA) activity resulting from variants in the GLA gene, which leads to glycosphingolipid accumulation and life-threatening, multi-organ complications. Approximately 50 variants have been reported that cause splicing abnormalities in GLA. Most were found within canonical splice sites, which are highly conserved GT and AG splice acceptor and donor dinucleotides, whereas one-third were located outside canonical splice sites, making it difficult to interpret their pathogenicity. In this study, we aimed to investigate the genetic pathogenicity of variants located in non-canonical splice sites within the GLA gene. METHODS: 13 variants, including four deep intronic variants, were selected from the Human Gene Variant Database Professional. We performed an in vitro splicing assay to identify splicing abnormalities in the variants. RESULTS: All candidate non-canonical splice site variants in GLA caused aberrant splicing. Additionally, all but one variant was protein-truncating. The four deep intronic variants generated abnormal transcripts, including a cryptic exon, as well as normal transcripts, with the proportion of each differing in a cell-specific manner. CONCLUSIONS: Validation of splicing effects using an in vitro splicing assay is useful for confirming pathogenicity and determining associations with clinical phenotypes.


Assuntos
Doença de Fabry , Sítios de Splice de RNA , Humanos , Éxons , Doença de Fabry/genética , Íntrons , Mutação , Sítios de Splice de RNA/genética , Splicing de RNA
3.
Clin Exp Nephrol ; 27(3): 218-226, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36371577

RESUMO

BACKGROUND AND OBJECTIVES: The evident genotype-phenotype correlation shown by the X-linked Alport syndrome warrants the assessment of the impact of identified gene variants on aberrant splicing. We previously reported that single nucleotide variants (SNVs) in the last nucleotide of exons in COL4A5 cause aberrant splicing. It is known that the nucleotides located 2nd and 3rd to the last nucleotides of exons can also play an essential role in the first step of the splicing process. In this study, we aimed to investigate whether SNVs positioned 2nd or 3rd to the last nucleotide of exons in COL4A5 resulted in aberrant splicing. METHODS: We selected eight candidate variants: six from the Human Gene Variant Database Professional and two from our cohort. We performed an in-vitro splicing assay and reverse transcription-polymerase chain reaction (RT-PCR) for messenger RNA obtained from patients, if available. RESULTS: The candidate variants were initially classified into the following groups: three nonsense, two missense, and three synonymous variants. Splicing assays and RT-PCR for messenger RNA revealed that six of the eight variants caused aberrant splicing. Four variants, initially classified as non-truncating variants, were found to be truncating ones, which usually show relatively more severe phenotypes. CONCLUSION: We revealed that exonic SNVs positioned 2nd or 3rd to the last nucleotide of exons in the COL4A5 were responsible for aberrant splicing. The results of our study suggest that attention should be paid when interpreting the pathogenicity of exonic SNVs near the 5' splice site.


Assuntos
Nucleotídeos , Splicing de RNA , Humanos , Éxons , Sítios de Splice de RNA , RNA Mensageiro/genética , Mutação , Colágeno Tipo IV/genética
4.
Am J Kidney Dis ; 78(4): 560-570.e1, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838161

RESUMO

RATIONALE & OBJECTIVE: Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS: A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS: The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS: Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Testes Genéticos/métodos , Variação Genética/genética , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nefrite Hereditária/epidemiologia , Insuficiência Renal/diagnóstico , Insuficiência Renal/epidemiologia , Insuficiência Renal/genética , Estudos Retrospectivos , Adulto Jovem
5.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948126

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Rim Policístico Autossômico Dominante , Animais , Modelos Animais de Doenças , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo
6.
Nephrol Dial Transplant ; 35(7): 1113-1132, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777081

RESUMO

For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.


Assuntos
Testes Genéticos/métodos , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Assistência ao Paciente/normas , Adulto , Criança , Humanos , Nefropatias/terapia
7.
Hum Genomics ; 12(1): 5, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382385

RESUMO

The 2017 KidGen Renal Genetics Symposium was held at the Royal Children's Hospital and Murdoch Children's Research Institute, Melbourne, from 6 to 8 December 2017. This meeting addressed clinical, diagnostic, and research aspects of inherited kidney disease. More than 100 clinicians, researchers, and patient representatives attended the conference. The overall goal was to improve the understanding and direction of genomics in renal medicine in Australia and discuss barriers to the use of genomic testing within this area. It also aimed to strengthen collaborations between local, state, and global research and diagnostic and clinical groups.


Assuntos
Genômica , Nefropatias/genética , Rim/fisiopatologia , Humanos , Nefropatias/fisiopatologia
8.
Nephrology (Carlton) ; 24(3): 279-286, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30239064

RESUMO

There have been few new therapies for patients with chronic kidney disease in the last decade. However, the management of patients affected by genetic kidney disease is rapidly evolving. Inherited or genetic kidney disease affects around 10% of adults with end-stage kidney disease and up to 70% of children with early onset kidney disease. Advances in next-generation sequencing have enabled rapid and cost-effective sequencing of large amounts of DNA. Next-generation sequencing-based diagnostic tests now enable identification of a monogenic cause in around 20% of patients with early-onset chronic kidney disease. A definitive diagnosis through genomic testing may negate the need for prolonged diagnostic investigations and surveillance, facilitate reproductive planning and provide accurate counselling for at-risk relatives. Genomics has allowed the better understanding of disease pathogenesis, providing prognostic information and facilitating development of targeted treatments for patients with inherited or genetic kidney disease. Although genomic testing is becoming more readily available, there are many challenges to implementation in clinical practice. Multidisciplinary renal genetics clinics serve as a model of how some of these challenges may be overcome. Such clinics are already well established in most parts of Australia, with more to follow in future. With the rapid pace of new technology and gene discovery, collaboration between expert clinicians, laboratory and research scientists is of increasing importance to maximize benefits to patients and health-care systems.


Assuntos
Testes Genéticos/métodos , Nefropatias , Administração dos Cuidados ao Paciente/tendências , Austrália/epidemiologia , Aconselhamento Genético , Humanos , Nefropatias/congênito , Nefropatias/epidemiologia , Nefropatias/genética , Nefrologia/métodos , Nefrologia/tendências , Análise de Sequência/métodos , Análise de Sequência/tendências
9.
Am J Kidney Dis ; 72(3): 411-418, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29784615

RESUMO

RATIONALE & OBJECTIVE: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare underdiagnosed cause of end-stage renal disease (ESRD). ADTKD is caused by mutations in at least 4 different genes: MUC1, UMOD, HNF1B, and REN. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 56 families (131 affected individuals) with ADTKD referred from different Spanish hospitals. Clinical, laboratory, radiologic, and pathologic data were collected, and genetic testing for UMOD, MUC1, REN, and HNF1B was performed. PREDICTORS: Hyperuricemia, ultrasound findings, renal histology, genetic mutations. OUTCOMES: Age at ESRD, rate of decline in estimated glomerular filtration rate. RESULTS: ADTKD was diagnosed in 25 families (45%), 9 carried UMOD pathogenic variants (41 affected members), and 16 carried the MUC1 pathogenic mutation c.(428)dupC (90 affected members). No pathogenic variants were identified in REN or HNF1B. Among the 77 individuals who developed ESRD, median age at onset of ESRD was 51 years for those with ADTKD-MUC1 versus 56 years (P=0.1) for those with ADTKD-UMOD. Individuals with the MUC1 duplication presented higher risk for developing ESRD (HR, 2.24; P=0.03). The slope of decline in estimated glomerular filtration rate showed no significant difference between groups (-3.0mL/min/1.73m2 per year in the ADTKD-UMOD group versus -3.9mL/min/1.73m2 per year in the ADTKD-MUC1 group; P=0.2). The prevalence of hyperuricemia was significantly higher in individuals with ADTKD-UMOD (87% vs 54%; P=0.006). Although gout occurred more frequently in this group, the difference was not statistically significant (24% vs 7%; P=0.07). LIMITATIONS: Relatively small Spanish cohort. MUC1 analysis limited to cytosine duplication. CONCLUSIONS: The main genetic cause of ADTKD in our Spanish cohort is the MUC1 pathogenic mutation c.(428)dupC. Renal survival may be worse in individuals with the MUC1 mutation than in those with UMOD mutations. Clinical presentation does not permit distinguishing between these variants. However, hyperuricemia and gout are more frequent in individuals with ADTKD-UMOD.


Assuntos
Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Mucina-1/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Uromodulina/genética , Adulto , Feminino , Humanos , Falência Renal Crônica/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/genética , Rim Policístico Autossômico Dominante/epidemiologia , Espanha/epidemiologia
10.
Clin Exp Nephrol ; 22(4): 881-888, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29372472

RESUMO

BACKGROUND: Comprehensive genetic approaches for diagnosing inherited kidney diseases using next-generation sequencing (NGS) have recently been established. However, even with these approaches, we are still failing to detect gene defects in some patients who appear to suffer from genetic diseases. One of the reasons for this is the difficulty of detecting copy number variations (CNVs) using our current approaches. For such cases, we can apply methods of array-based comparative genomic hybridization (aCGH) or multiplex ligation and probe amplification (MLPA); however, these are expensive and laborious and also often fail to identify CNVs. Here, we report seven cases with CNVs in various inherited kidney diseases screened by NGS pair analysis. METHODS: Targeted sequencing analysis for causative genes was conducted for cases with suspected inherited kidney diseases, for some of which a definitive genetic diagnosis had not been achieved. We conducted pair analysis using NGS data for those cases. When CNVs were detected by pair analysis, they were confirmed by aCGH and/or MLPA. RESULTS: In seven cases, CNVs in various causative genes of inherited kidney diseases were detected by pair analysis. With aCGH and/or MLPA, pathogenic CNV variants were confirmed: COL4A5 or HNF1B in two cases each, and EYA1, CLCNKB, or PAX2 in one each. CONCLUSION: We presented seven cases with CNVs in various genes that were screened by pair analysis. The NGS-based CNV detection method is useful for comprehensive screening of CNVs, and our results revealed that, for a certain proportion of cases, CNV analysis is necessary for accurate genetic diagnosis.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Nefropatias/genética , Adulto , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Nefropatias/diagnóstico , Masculino , Pessoa de Meia-Idade
11.
Nephrology (Carlton) ; 23(11): 981-990, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29851168

RESUMO

Recent developments in targeted gene editing have paved the way for the wide adoption of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nucleases (Cas9) as an RNA-guided molecular tool to modify the genome of eukaryotic cells of animals. Theoretically, the translation of CRISPR-Cas9 can be applied to the treatment of inherited or acquired kidney disease, kidney transplantation and genetic corrections of somatic cells from kidneys with inherited mutations, such as polycystic kidney disease. Human pluripotent stem cells have been used to generate an unlimited source of kidney progenitor cells or, when spontaneously differentiated into three-dimensional kidney organoids, to model kidney organogenesis or the pathogenesis of disease. Gene editing now allows for the tagging and selection of specific kidney cell types or disease-specific gene knock in/out, which enables more precise understanding of kidney organogenesis and genetic diseases. This review discusses the mechanisms of action, in addition to the advantages and disadvantages, of the three major gene editing technologies, namely, CRISPR-Cas9, zinc finger nucleases and transcription activator-like effector nucleases. The implications of using gene editing to better understand kidney disease is reviewed in detail. In addition, the ethical issues of gene editing, which could be easily neglected in the modern, fast-paced research environment, are highlighted.


Assuntos
Edição de Genes , Nefropatias/terapia , Células-Tronco/metabolismo , Animais , Sistemas CRISPR-Cas , Edição de Genes/ética , Terapia Genética , Humanos , Nefropatias/etiologia , Nefropatias/genética
12.
Kidney Int ; 92(6): 1493-1506, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844315

RESUMO

Inherited kidney disease encompasses a broad range of disorders, with both multiple genes contributing to specific phenotypes and single gene defects having multiple clinical presentations. Advances in sequencing capacity may allow a genetic diagnosis for familial renal disease, by testing the increasing number of known causative genes. However, there has been limited translation of research findings of causative genes into clinical settings. Here, we report the results of a national accredited diagnostic genetic service for familial renal disease. An expert multidisciplinary team developed a targeted exomic sequencing approach with ten curated multigene panels (207 genes) and variant assessment individualized to the patient's phenotype. A genetic diagnosis (pathogenic genetic variant[s]) was identified in 58 of 135 families referred in two years. The genetic diagnosis rate was similar between families with a pediatric versus adult proband (46% vs 40%), although significant differences were found in certain panels such as atypical hemolytic uremic syndrome (88% vs 17%). High diagnostic rates were found for Alport syndrome (22 of 27) and tubular disorders (8 of 10), whereas the monogenic diagnostic rate for congenital anomalies of the kidney and urinary tract was one of 13. Quality reporting was aided by a strong clinical renal and genetic multidisciplinary committee review. Importantly, for a diagnostic service, few variants of uncertain significance were found with this targeted, phenotype-based approach. Thus, use of targeted massively parallel sequencing approaches in inherited kidney disease has a significant capacity to diagnose the underlying genetic disorder across most renal phenotypes.


Assuntos
Exoma/genética , Testes Genéticos/métodos , Nefropatias/diagnóstico , Adolescente , Adulto , Idoso , Austrália , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Aconselhamento Genético/métodos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Recém-Nascido , Nefropatias/genética , Nefropatias/terapia , Masculino , Pessoa de Meia-Idade , Fenótipo , Medicina de Precisão/métodos , Análise de Sequência de DNA , Adulto Jovem
13.
Nephrol Dial Transplant ; 32(5): 830-837, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27387476

RESUMO

BACKGROUND: Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. METHODS: Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. RESULTS: HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. CONCLUSIONS: We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be considered in any patient with hypoparathyroidism and deafness, whether associated with renal abnormalities or not. HDR diagnosis is established through identification of a mutation in the GATA-3 gene.


Assuntos
Surdez/diagnóstico , Fator de Transcrição GATA3/genética , Hipoparatireoidismo/diagnóstico , Rim/anormalidades , Mutação de Sentido Incorreto/genética , Anormalidades Urogenitais/diagnóstico , Adolescente , Adulto , Idoso , Surdez/genética , Feminino , Humanos , Hipoparatireoidismo/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Estudos Retrospectivos , Síndrome , Anormalidades Urogenitais/genética , Adulto Jovem
14.
Hum Mutat ; 35(7): 791-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24826923

RESUMO

This study examined whether gene-specific DNA variant databases for inherited diseases of the kidney fulfilled the Human Variome Project recommendations of being complete, accurate, clinically relevant and freely available. A recent review identified 60 inherited renal diseases caused by mutations in 132 genes. The disease name, MIM number, gene name, together with "mutation" or "database," were used to identify web-based databases. Fifty-nine diseases (98%) due to mutations in 128 genes had a variant database. Altogether there were 349 databases (a median of 3 per gene, range 0-6), but no gene had two databases with the same number of variants, and 165 (50%) databases included fewer than 10 variants. About half the databases (180, 54%) had been updated in the previous year. Few (77, 23%) were curated by "experts" but these included nine of the 11 with the most variants. Even fewer databases (41, 12%) included clinical features apart from the name of the associated disease. Most (223, 67%) could be accessed without charge, including those for 50 genes (40%) with the maximum number of variants. Future efforts should focus on encouraging experts to collaborate on a single database for each gene affected in inherited renal disease, including both unpublished variants, and clinical phenotypes.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Nefropatias/genética , Mutação , Humanos , Internet , Navegador
15.
Nephrol Dial Transplant ; 29 Suppl 4: iv33-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25165184

RESUMO

The nephron, the basic structural and functional unit of the kidney, is lined by different, highly differentiated polarized epithelial cells. Their concerted action modifies the composition of the glomerular ultrafiltrate through reabsorption and secretion of essential solutes to finally produce urine. The highly specialized properties of the different epithelial cell types of the nephron are remarkable and rely on the regulated delivery of specific proteins to their final subcellular localization. Hence, mutations affecting sorting of individual proteins or inactivating the epithelial trafficking machinery have severe functional consequences causing disease. The presence of mutations leading to protein trafficking defect is indeed a mechanism of pathogenesis seen in an increasing number of disorders, including about one-third of monogenic diseases affecting the kidney. In this review, we focus on representative diseases to discuss different molecular mechanisms that primarily lead to defective protein transport, such as endoplasmic reticulum retention, mistargeting, defective endocytosis or degradation, eventually resulting in epithelial cell and kidney dysfunction. For each disease, we discuss the type of reported mutations, their molecular and cellular consequences and possible strategies for therapeutic intervention. Particular emphasis is given to new and prospective therapies aimed at rescuing the trafficking defect at the basis of these conformational diseases.


Assuntos
Predisposição Genética para Doença , Nefropatias/metabolismo , Proteínas/metabolismo , Animais , Humanos , Nefropatias/genética , Nefropatias/patologia , Transporte Proteico
16.
Kidney Int Rep ; 9(4): 994-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765603

RESUMO

Introduction: Kidney disease of unknown etiology accounts for 1 in 10 adult end-stage renal disease (ESRD) cases worldwide. The aim of this study is to clarify the genetic background of patients with chronic kidney disease (CKD) of unknown etiology who initiated renal replacement therapy (RRT) in adulthood. Methods: This is a multicenter cross-sectional cohort study. Of the 1164 patients who attended 4 dialysis clinics in Japan, we first selected patients who started RRT between the ages of 20 and 49 years. After excluding patients with apparent causes of CKD (e.g., diabetic nephropathy, polycystic kidney disease (PKD) with family history, patients who underwent renal biopsy), 90 patients with CKD of unknown cause were included. The 298 genes associated with CKD were analyzed using capture-based targeted next-generation sequencing. Results: Of the 90 patients, 10 (11.1%) had pathogenic variants in CKD-causing genes and 17 (18.9%) had variant of unknown significance (VUS). Three patients had PKD1 pathogenic variants, and 1 patient had PKD1 and COL4A4 pathogenic variants. In addition, 2 patients were diagnosed with atypical hemolytic uremic syndrome (aHUS) due to C3 or CFHR5. One patient each was diagnosed with Alport syndrome due to COL4A4 and COL4A3 variants, nephronophthisis due to NPHP1 variants, Fabry disease due to GLA variants, and autosomal-dominant tubulointerstitial kidney disease due to UMOD variants. Genetic diagnoses were not concordant with clinical diagnoses, except for patients with PKD1 variant. Conclusion: This largest study on genetic analysis in hemodialysis-dependent adults revealed the presence of undiagnosed inherited kidney diseases.

17.
Kidney Int Rep ; 8(10): 2077-2087, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850010

RESUMO

Introduction: Previous studies have suggested that genetic kidney diseases in adults are often overlooked, representing up to 10% of all cases of chronic kidney disease (CKD). We present data obtained from exome sequencing (ES) analysis of patients with biopsy-proven undetermined kidney disease (UKD). Methods: ES was proposed during routine clinical care in patients with UKD from January 2020 to December 2021. We used in silico custom kidney genes panel analysis to detect pathological variations using American College of Medical Genetics guidelines in 52 patients with biopsy-proven UKD with histological finding reassessment. Results: We detected 12 monogenic renal disorders in 21 (40.4%) patients. The most common diagnoses were collagenopathies (8/21,38.1%), COL4A3 and COL4A4 accounting for 80% of these diagnoses, and ciliopathies (5/21, 23.8%). The diagnostic yield of ES was higher in female patients and patients with a family history of kidney disease (57.1% and 71%, respectively). Clinical nephropathy categories matched with the final genetic diagnoses in 72.7% of cases, whereas histological renal lesions matched with the final diagnoses in 92.3% of cases. The genetics diagnoses and histopathological findings were in complete agreement for both glomerular and tubulointerstitial cases. Interstitial inflammation without tubulitis was only observed in tubulopathies or ciliopathies. Isolated CKD, CKD with proteinuria or hematuria, and isolated proteinuria or hematuria yielded the highest diagnostic yields (54.6%, 52.6%, and 42.9%, respectively). Conclusion: ES done in patients with biopsy-proven UKD should be considered as a first-line tool for CKD patients with a family history of kidney disease. Combination of ES and kidney biopsy may have major impacts on kidney disease ontology.

18.
J Rural Med ; 18(2): 143-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37032986

RESUMO

Objective: Intersectin 2 (ITSN2) is reported to cause hereditary nephrotic syndrome, but the number of cases remains quite small. We observed a case of progressive renal dysfunction and family history for end-stage kidney disease with a known single heterozygous ITSN2 variant. This study aimed to reveal the novel pathological significance of altered ITSN2 expression via a detailed examination. Patient and Methods: A 52-year-old Japanese woman with mild proteinuria and hematuria visited our center. The patient did not opt for a detailed examination but was instead followed up with conservative treatment consisting of low-dose angiotensin receptor blockers. Serum Cr worsened from 1.15 to 1.79 mg/dL after 7 years when precise diagnosis was performed by renal biopsy and genetic testing. Results: Kidney biopsy showed a thin basement membrane (TBM) and global glomerulosclerosis in 37.5% (6 out of 16) glomeruli examined. Comprehensive gene panel testing of 121 genes revealed a known ITSN2 variant, assumed to be involved in pathogenesis. No variants in the Alport syndrome genes, which are typically responsible for TBM, were detected. Conclusion: A possible novel phenotype of the heterozygous ITSN2 variant was identified as a cause of hereditary renal failure. Further investigation of similar cases is required for a better understanding.

19.
Clin Kidney J ; 15(11): 1973-1980, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36324999

RESUMO

Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.

20.
Clin Kidney J ; 14(8): 1879-1885, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345410

RESUMO

Inherited kidney diseases (IKDs) are among the leading causes of early-onset chronic kidney disease (CKD) and are responsible for at least 10-15% of cases of kidney replacement therapy (KRT) in adults. Paediatric nephrologists are very aware of the high prevalence of IKDs among their patients, but this is not the case for adult nephrologists. Recent publications have demonstrated that monogenic diseases account for a significant percentage of adult cases of CKD. A substantial number of these patients have received a non-specific/incorrect diagnosis or a diagnosis of CKD of unknown aetiology, which precludes correct treatment, follow-up and genetic counselling. There are a number of reasons why genetic kidney diseases are difficult to diagnose in adulthood: (i) adult nephrologists, in general, are not knowledgeable about IKDs; (ii) existence of atypical phenotypes; (iii) genetic testing is not universally available; (iv) family history is not always available or may be negative; (v) lack of knowledge of various genotype-phenotype relationships and (vi) conflicting interpretation of the pathogenicity of many sequence variants. Registries can contribute to visualize the burden of IKDs by regularly grouping all IKDs in their annual reports, as is done for glomerulonephritis or interstitial diseases, rather than reporting only cystic disease and hiding other IKDs under labels such as 'miscellaneous' or 'other'. Any effort to reduce the percentage of patients needing KRT with a diagnosis of 'nephropathy of unknown etiology' or an unspecific/incorrect diagnosis should be encouraged as a step towards precision nephrology. Genetic testing may be of value in this context but should not be used indiscriminately, but rather on the basis of a deep knowledge of IKDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA