Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(1): 192-205, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772415

RESUMO

Equine mesenchymal stromal cells (MSCs) have been found to be beneficial for the treatment of many ailments, including orthopedic injuries, due to their superior differentiation potential and immunomodulating properties. Cell therapies require large cell numbers, which are not efficiently generated using conventional static expansion methods. Expansion of equine cord blood-derived MSCs (eCB-MSCs) in bioreactors, using microcarriers as an attachment surface, has the potential to generate large numbers of cells with increased reproducibility and homogeneity compared with static T-flask expansion. This study investigated the development of an expansion process using Vertical-Wheel (VW) bioreactors, a single-use bioreactor technology that incorporates a wheel instead of an impeller. Initially, microcarriers were screened at small scale to assess eCB-MSC attachment and growth and then in bioreactors to assess cell expansion and harvesting. The effect of different donors, serial passaging, and batch versus fed batch were all examined in 0.1 L VW bioreactors. The use of VW bioreactors with an appropriate microcarrier was shown to be able to produce cell densities of up to 1E6 cells/mL, while maintaining cell phenotype and functionality, thus demonstrating great potential for the use of these bioreactors to produce large cell numbers for cell therapies.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Animais , Cavalos , Técnicas de Cultura de Células/métodos , Sangue Fetal , Reprodutibilidade dos Testes , Reatores Biológicos , Diferenciação Celular , Proliferação de Células
2.
J Nanobiotechnology ; 22(1): 512, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192268

RESUMO

With the accelerated aging tendency, osteoarthritis (OA) has become an intractable global public health challenge. Stem cells and their derivative exosome (Exo) have shown great potential in OA treatment. Research in this area tends to develop functional microcarriers for stem cell and Exo delivery to improve the therapeutic effect. Herein, we develop a novel system of Exo-encapsulated stem cell-recruitment hydrogel microcarriers from liquid nitrogen-assisted microfluidic electrospray for OA treatment. Benefited from the advanced droplet generation capability of microfluidics and mild cryogelation procedure, the resultant particles show uniform size dispersion and excellent biocompatibility. Moreover, acryloylated stem cell recruitment peptides SKPPGTSS are directly crosslinked within the particles by ultraviolet irradiation, thus simplifying the peptide coupling process and preventing its premature release. The SKPPGTSS-modified particles can recruit endogenous stem cells to promote cartilage repair and the released Exo from the particles further enhances the cartilage repair performance through synergistic effects. These features suggest that the proposed hydrogel microcarrier delivery system is a promising candidate for OA treatment.


Assuntos
Exossomos , Hidrogéis , Osteoartrite , Peptídeos , Células-Tronco , Exossomos/química , Exossomos/metabolismo , Osteoartrite/terapia , Animais , Peptídeos/química , Hidrogéis/química , Células-Tronco/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Condrócitos/metabolismo
3.
Nano Lett ; 23(23): 10832-10840, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38009465

RESUMO

The histone deacetylase inhibitor (HDACi) was a milestone in the treatment of refractory T-cell lymphoma. However, the beneficial effects of HDACi have not been appreciated in osteoarthritis (OA). Herein, we implemented a microcarrier system because of the outstanding advantages of controlled and sustained release, biodegradability, and biocompatibility. The poly(d,l-lactide-co-glycolide) (PLGA) microcapsules have a regulated and sustained release profile with a reduced initial burst release, which can improve the encapsulation efficiency of the Chidamide. The emulsion solvent evaporation strategy was used to encapsulate Chidamide in PLGA microcapsules. The encapsulation of Chidamide was established by UV-vis spectra and scanning electron microscopy. Additionally, the inhibition of Tnnt3 and immune stimulation by Chidamide helped to inhibit cartilage destruction and prevent articular cartilage degeneration. Based on the results, the Chidamide in PLGA microcapsules provides a transformative therapeutic strategy for the treatment of osteoarthritis patients to relieve symptoms and protect against cartilage degeneration.


Assuntos
Inibidores de Histona Desacetilases , Osteoartrite , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Cápsulas , Osteoartrite/tratamento farmacológico
4.
Appl Microbiol Biotechnol ; 107(18): 5669-5685, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470820

RESUMO

Due to their immunomodulatory properties and in vitro differentiation ability, human mesenchymal stromal cells (hMSCs) have been investigated in more than 1000 clinical trials over the last decade. Multiple studies that have explored the development of gene-modified hMSC-based products are now reaching early stages of clinical trial programmes. From an engineering perspective, the challenge lies in developing manufacturing methods capable of producing sufficient doses of ex vivo gene-modified hMSCs for clinical applications. This work demonstrates, for the first time, a scalable manufacturing process using a microcarrier-bioreactor system for the expansion of gene-modified hMSCs. Upon isolation, umbilical cord tissue mesenchymal stromal cells (UCT-hMSCs) were transduced using a lentiviral vector (LV) with green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) transgenes. The cells were then seeded in 100 mL spinner flasks using Spherecol microcarriers and expanded for seven days. After six days in culture, both non-transduced and transduced cell populations attained comparable maximum cell concentrations (≈1.8 × 105 cell/mL). Analysis of the culture supernatant identified that glucose was fully depleted after day five across the cell populations. Lactate concentrations observed throughout the culture reached a maximum of 7.5 mM on day seven. Immunophenotype analysis revealed that the transduction followed by an expansion step was not responsible for the downregulation of the cell surface receptors used to identify hMSCs. The levels of CD73, CD90, and CD105 expressing cells were above 90% for the non-transduced and transduced cells. In addition, the expression of negative markers (CD11b, CD19, CD34, CD45, and HLA-DR) was also shown to be below 5%, which is aligned with the criteria established for hMSCs by the International Society for Cell and Gene Therapy (ISCT). This work provides a foundation for the scalable manufacturing of gene-modified hMSCs which will overcome a significant translational and commercial bottleneck. KEY POINTS: • hMSCs were successfully transduced by lentiviral vectors carrying two different transgenes: GFP and VEGF • Transduced hMSCs were successfully expanded on microcarriers using spinner flasks during a period of 7 days • The genetic modification step did not cause any detrimental impact on the hMSC immunophenotype characteristics.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Reatores Biológicos , Diferenciação Celular , Proliferação de Células
5.
Biotechnol Lett ; 45(7): 823-846, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171697

RESUMO

Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cinética , Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura , Diferenciação Celular , Células Cultivadas
6.
J Nanobiotechnology ; 20(1): 303, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761235

RESUMO

Loss of extracellular matrix (ECM) of cartilage due to oxidative stress injury is one of the main characteristics of osteoarthritis (OA). As a bioactive molecule derived from the traditional Chinese Burdock, arctiin exerts robust antioxidant properties to modulate redox balance. However, the potential therapeutic effects of arctiin on OA and the underlying mechanisms involved are still unknown. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) tool, Burdock-extracted small molecule arctiin was identified as a potential anti-arthritic component. In vitro, treatment using arctiin rescued the interleukin (IL)-1ß-induced activation of proteinases and promoted the cartilage ECM synthesis in human chondrocytes. In vivo, intraperitoneal injection of arctiin ameliorated cartilage erosion and encountered subchondral bone sclerosis in the post-traumatic OA mice. Transcriptome sequencing uncovered that arctiin-enhanced cartilage matrix deposition was associated with restricted oxidative stress. Mechanistically, inhibition of nuclear factor erythroid 2-related factor 2 (NRF2) abolished arctiin-mediated anti-oxidative and anti-arthritic functions. To further broaden the application prospects, a gellan gum (GG)-based bioactive gel (GG-CD@ARC) encapsulated with arctiin was made to achieve long-term and sustained drug release. Intra-articular injection of GG-CD@ARC counteracted cartilage degeneration in the severe (12 weeks) OA mice model. These findings indicate that arctiin may be a promising anti-arthritic agent. Furthermore, GG-modified bioactive glue loaded with arctiin provides a unique strategy for treating moderate to severe OA.


Assuntos
Antioxidantes , Osteoartrite , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Condrócitos , Furanos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Camundongos , Osteoartrite/tratamento farmacológico
7.
Prep Biochem Biotechnol ; 52(2): 181-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34010098

RESUMO

The aim of this study was to develop gelatin coated polystyrene (PS) microcarriers with good cell adhesion and proliferation properties. PS microspheres, prepared using oil-in water (o/w) solvent evaporation method, were loaded with oxygen containing functional groups using an ultraviolet/ozone (UVO3) system. Using water-soluble carbodiimide chemistry, gelatin was subsequently immobilized on UVO3 treated PS microspheres. The amount of immobilized gelatin was found to be directly proportional to the surface carboxyl (COOH) concentration on PS microspheres. Face Centered Central Composite Design (FCCD) was employed to optimize the process conditions of UVO3 treatment to maximize the surface COOH concentration on PS microspheres for allowing higher gelatin immobilization. Statistical results revealed that, the optimized process conditions were ozone flow rate of ∼64,603 ppm, exposure time of ∼60 minutes and sample amount of 5.05 g. Under these conditions, the surface COOH concentration on PS microspheres was ∼1,505 nmol/g with the corresponding amount of immobilized gelatin was ∼2,725 µg/g. Characterization analyses strongly suggest that the optimized UVO3 treatment and successive gelatin immobilization have successfully improved surface wettability and dispersion stability of PS microspheres. Moreover, gelatin coated PS microcarriers were also proven as able to support the growth of CHO-K1 cells in high cell density culture.


Assuntos
Portadores de Fármacos , Gelatina/química , Ozônio/química , Poliestirenos/química , Raios Ultravioleta , Animais , Células CHO , Cricetulus , Microesferas
8.
Small ; 17(11): e2006596, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33620759

RESUMO

Cell therapeutics hold tremendous regenerative potential and the therapeutic effect depends on the effective delivery of cells. However, current cell delivery carriers with unsuitable cytocompatibility and topological structure demonstrate poor cell viability during injection. Therefore, porous shape-memory cryogel microspheres (CMS) are prepared from methacrylated gelatin (GelMA) by combining an emulsion technique with gradient-cooling cryogelation. Pore sizes of the CMS are adjusted via the gradient-cooling procedure, with the optimized pore size (15.5 ± 6.0 µm) being achieved on the 30-min gradient-cooled variant (CMS-30). Unlike hydrogel microspheres (HMS), CMS promotes human bone marrow stromal cell (hBMSC) and human umbilical vein endothelial cell (HUVEC) adhesion, proliferated with high levels of stemness for 7 d, and protects cells during the injection process using a 26G syringe needle. Moreover, CMS-30 enhances the osteogenic differentiation of hBMSCs in osteoinductive media. CMS can serve as building blocks for delivering multiple cell types. Here, hBMSC-loaded and HUVEC-loaded CMS-30, mixed at a 1:1 ratio, are injected subcutaneously into nude mice for 2 months. Results show the development of vascularized bone-like tissue with high levels of OCN and CD31. These findings indicate that GelMA CMS of a certain pore size can effectively deliver multiple cells to achieve functional tissue regeneration.


Assuntos
Gelatina , Osteogênese , Animais , Regeneração Óssea , Criogéis , Camundongos , Camundongos Nus , Microesferas
9.
Crit Rev Biotechnol ; 41(7): 1081-1095, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33730936

RESUMO

Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.


Assuntos
Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Medicina Regenerativa , Células-Tronco
10.
Biotechnol Bioeng ; 118(1): 329-344, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32955111

RESUMO

Human olfactory mucosa cells (hOMCs) have potential as a regenerative therapy for spinal cord injury. In our earlier work, we derived PA5 cells, a polyclonal population that retains functional attributes of primary human OMCs. Microcarrier suspension culture is an alternative to planar two-dimensinal culture to produce cells in quantities that can meet the needs of clinical development. This study aimed to screen the effects of 10 microcarriers on PA5 hOMCs yield and phenotype. Studies performed in well plates led to a 2.9-fold higher cell yield on plastic compared to plastic plus microcarriers with upregulation of neural markers ß-III tubulin and nestin for both conditions. Microcarrier suspension culture resulted in concentrations of 1.4 × 105 cells/ml and 4.9 × 104 cells/ml for plastic and plastic plus, respectively, after 7 days. p75NTR transcript was significantly upregulated for PA5 hOMCs grown on Plastic Plus compared to Plastic. Furthermore, coculture of PA5 hOMCs grown on Plastic Plus with a neuronal cell line (NG108-15) led to increased neurite outgrowth. This study shows successful expansion of PA5 cells using suspension culture on microcarriers, and it reveals competing effects of microcarriers on cell expansion versus functional attributes, showing that designing scalable bioprocesses should not only be driven by cell yields.


Assuntos
Diferenciação Celular , Regeneração Nervosa , Mucosa Olfatória/metabolismo , Linhagem Celular , Técnicas de Cocultura , Humanos , Mucosa Olfatória/citologia
11.
Appl Microbiol Biotechnol ; 105(24): 9113-9124, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34782922

RESUMO

The oncolytic virus H-1PV is a promising candidate for various cancer treatments. Therefore, production process needs to be optimized and scaled up for future market release. Currently, the virus is produced with minimum essential medium in 10-layer CellSTACK® chambers with limited scalability, requiring a minimum seeding density of 7.9E3 cells/cm2. Production also requires a 5% fetal bovine serum (FBS) supplementation and has a virus yield up to 3.1E7 plaque-forming units (PFU)/cm2. Using the animal-free cell culture medium VP-SFM™ and a new feeding strategy, we demonstrate a yield boost by a mean of 0.3 log while reducing seeding density to 5.0E3 cells/cm2 and cutting FBS supplementation by up to 40% during the production process. Additionally, FBS is completely removed at the time of harvest. Eleven commercial micro- and macrocarriers were screened regarding cell growth, bead-to-bead transfer capability, and virus yield. We present a proof-of-concept study for producing H-1PV on a large scale with the microcarrier Cytodex® 1 in suspension and a macrocarrier for a fixed-bed iCELLis® bioreactor. A carrier-based H-1PV production process combined with an optimized cell culture medium and feeding strategy can facilitate future upscaling to industrial-scale production. KEY POINTS: • Virus yield increase and FBS-free harvest after switching to cell culture medium VP-SFM™. • We screened carriers for cell growth, bead-to-bead transfer capability, and H-1PV yield. • High virus yield is achieved with Cytodex® 1 and macrocarrier for iCellis® in Erlenmeyer flasks.


Assuntos
Parvovirus H-1 , Vírus Oncolíticos , Reatores Biológicos , Técnicas de Cultura de Células , Meios de Cultura , Vírus Oncolíticos/genética
12.
Cryobiology ; 103: 57-69, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582849

RESUMO

The gold standard in cryopreservation is still conventional slow freezing of single cells or small aggregates in suspension, although major cell loss and limitation to non-specialised cell types in stem cell technology are known drawbacks. The requirement for rapidly available therapeutic and diagnostic cell types is increasing constantly. In the case of human induced pluripotent stem cells (hiPSCs) or their derivates, more sophisticated cryopreservation protocols are needed to address this demand. These should allow a preservation in their physiological, adherent state, an efficient re-cultivation and upscaling upon thawing towards high-throughput applications in cell therapies or disease modelling in drug discovery. Here, we present a novel vitrification-based method for adherent hiPSCs, designed for automated handling by microfluidic approaches and with ready-to-use potential e.g. in suspension-based bioreactors after thawing. Modifiable alginate microcarriers serve as a growth surface for adherent hiPSCs that were cultured in a suspension-based bioreactor and subsequently cryopreserved via droplet-based vitrification in comparison to conventional slow freezing. Soft (0.35%) versus stiff (0.65%) alginate microcarriers in concert with adhesion time variation have been examined. Findings revealed specific optimal conditions leading to an adhesion time and growth surface (matrix) elasticity dependent hypothesis on cryo-induced damaging regimes for adherent cell types. Deviations from the found optimum parameters give rise to membrane ruptures assessed via SEM and major cell loss after adherent vitrification. Applying the optimal conditions, droplet-based vitrification was superior to conventional slow freezing. A decreased microcarrier stiffness was found to outperform stiffer material regarding cell recovery, whereas the stemness characteristics of rewarmed hiPSCs were preserved.


Assuntos
Células-Tronco Pluripotentes Induzidas , Vitrificação , Alginatos , Criopreservação/métodos , Elasticidade , Congelamento , Humanos
13.
Biochem Eng J ; 1682021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33967591

RESUMO

Human mesenchymal stem cells (hMSCs) are well known in cell therapy due to their secretion of trophic factors, multipotent differentiation potential, and ability for self-renewal. As a result, the number of clinical trials has been steadily increasing over the last decade highlighting the need for in vitro systems capable of producing large quantities of cells to meet growing demands. However, hMSCs are highly sensitive to microenvironment conditions, including shear stress caused by dynamic bioreactor systems, and can lead to alteration of cellular homeostasis. In this study, hMSCs were expanded on microcarriers within a 125 mL spinner flask bioreactor system. Our results demonstrate a three-fold expansion over seven days. Furthermore, our results show that culturing hMSCs in the microcarrier-based suspension bioreactor (compared to static planar culture) results in smaller cell size and higher levels of reactive oxidative species (ROS) and ROS regulator Sirtuin-3, which have implications on the nicotinamide adenine dinucleotide metabolic pathway and metabolic homeostasis. In addition, hMSCs in the bioreactor showed the increased Prostaglandin E2 secretion as well as reduced the Indoleamine-pyrrole 2,3-dioxygenase secretion upon stimulus with interferon gamma. The results of this study provide understanding of potential hMSC physiology alterations impacted by bioreactor microenvironment during scalable production of hMSCs for biomanufacturing and clinical trials.

14.
Bioprocess Biosyst Eng ; 44(9): 1831-1839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33821326

RESUMO

Mouse clonal mesenchymal stem cells (mc-MSCs) were cultured on a Cytodex 3 microcarrier in a spinner flask for a suspension culture under hypoxia condition to increase mass productivity. The hypoxia environment was established using 4.0 mM Na2SO3 with 10 µM or 100 µM CoCl2 for 24 h in a low glucose DMEM medium. As a result, the proliferation of mc-MSCs under hypoxic conditions was 1.56 times faster than the control group over 7 days. The gene expression of HIF-1a and VEGFA increased 4.62 fold and 2.07 fold, respectively. Furthermore, the gene expression of ALP, RUNX2, COL1A, and osteocalcin increased significantly by 9.55, 1.55, 2.29, and 2.53 times, respectively. In contrast, the expression of adipogenic differentiation markers, such as PPAR-γ and FABP4, decreased. These results show that the hypoxia environment produced by these chemicals in a suspension culture increases the proliferation of mc-MSCs and promotes the osteogenic differentiation of mc-MSCs.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Hipóxia Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C
15.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638629

RESUMO

Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.


Assuntos
Cartilagem Articular/citologia , Engenharia Tecidual/métodos , Animais , Doenças das Cartilagens/terapia , Diferenciação Celular/fisiologia , Condrócitos/citologia , Humanos , Microesferas
16.
Zhonghua Zhong Liu Za Zhi ; 43(9): 939-943, 2021 Sep 23.
Artigo em Zh | MEDLINE | ID: mdl-34530576

RESUMO

Objective: Establishment of a new model of human primary colon cancer transplantation tumor in normal immune mice and to provide a reliable experimental animal model for studying the pathogenesis of colon cancer under normal immunity. Methods: Human colon cancer cells come from colon cancer patients who underwent surgery in the Affiliated Hospital of Jining Medical College in 2017. The mice in the cell control group were inoculated with phosphate buffered solution (PBS) containing colon cancer cells, the microcarrier control group was inoculated with PBS containing microcarrier 6, and the cell-microcarrier complex group was inoculated with the PBS containing colon cancer cell-microcarrier complex. The cells of each group were inoculated under the skin of the right axilla of mice by subcutaneous injection, and the time, size, tumor formation rate and pathological changes under microscope were recorded. The transplanted tumor tissue was immunohistochemically stained with the EnVisiion two-step method, and the tumor formation rate of the transplanted tumor was judged according to the proportion of positive cells in the visual field. The polymerase chain reaction (PCR) method was used to detect the expression of human-specific Alu sequence in mice tumor tissue. Results: After inoculation with tumor cells, the mice in the cell control group and the microcarrier control group did not die and did not form tumors; the mice in the cell-microcarrier complex group had palpable subcutaneous tumors in the right axillary subcutaneously on the 5th to 7th days after inoculation, and tumor formation rate is 67% (10/15), and the tumor volume can reach about 500 mm(3) 2 to 3 weeks after vaccination. The immunohistochemistry results showed that CK20, CDX-2 and carcinoembryonic antigen were all positively expressed. The PCR results showed that the expression of human-specific Alu sequence can be detected in the transplanted tumor tissue of tumor-bearing mice. Conclusion: Human primary colon cancer cells used microcarrier 6 as a carrier to form tumors in normal immunized mice, and successfully established a new model of human colon cancer transplantation tumor in normal immune mice.


Assuntos
Neoplasias do Colo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Carga Tumoral
17.
Biol Proced Online ; 22: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021568

RESUMO

BACKGROUND: Cell invasion through extracellular matrix (ECM) is a critical step in tumor metastasis. To study cell invasion in vitro, the internal microenvironment can be simulated via the application of 3D models. RESULTS: This study presents a method for 3D invasion examination using microcarrier-based spheroids. Cell invasiveness can be evaluated by quantifying cell dispersion in matrices or tracking cell movement through time-lapse imaging. It allows measuring of cell invasion and monitoring of dynamic cell behavior in three dimensions. Here we show different invasive capacities of several cell types using this method. The content and concentration of matrices can influence cell invasion, which should be optimized before large scale experiments. We also introduce further analysis methods of this 3D invasion assay, including manual measurements and homemade semi-automatic quantification. Finally, our results indicate that the position of spheroids in a matrix has a strong impact on cell moving paths, which may be easily overlooked by researchers and may generate false invasion results. CONCLUSIONS: In all, the microcarrier-based spheroids 3D model allows exploration of adherent cell invasion in a fast and highly reproducible way, and provides informative results on dynamic cell behavior in vitro.

18.
Dig Dis Sci ; 65(7): 2009-2023, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31722057

RESUMO

BACKGROUND AND AIMS: Bioartificial livers (BALs) have attracted much attention as potential supportive therapies for liver diseases. A serum-free microcarrier culture strategy for the in vitro high-density expansion of human-induced hepatocyte-like cells (hiHeps) suitable for BALs was studied in this article. METHODS: hiHeps were transdifferentiated from human fibroblasts by the lentiviral overexpression of FOXA3, HNF1A, and HNF4A. Cells were cultured on microcarriers, their proliferation was evaluated by cell count and CCK-8 assays, and their function was evaluated by detecting liver function parameters in the supernatant, including urea secretion, albumin synthesis, and lactate dehydrogenase levels. The expressions of hepatocyte function-associated genes of hiHeps were measured by qRT-PCR in 2D and 3D conditions. The expression of related proteins during fibronectin promotes cell adhesion, and proliferation on microcarrier was detected by western blotting. RESULTS: During microcarrier culture, the optimal culture conditions during the adherence period were the use of half-volume high-density inoculation, Cytodex 3 at a concentration of 3 mg/mL, a cell seeding density of 2.0 × 105 cells/mL, and a stirring speed of 45 rpm. The final cell density in self-developed, chemically defined serum-free medium (SFM) reached 2.53 × 106 cells/mL, and the maximum increase in expansion was 12.61-fold. In addition, we found that fibronectin (FN) can promote hiHep attachment and proliferation on Cytodex 3 microcarriers and that this pro-proliferative effect was mediated by the integrin-ß1/FAK/ERK/CyclinD1 signaling pathway. Finally, the growth and function of hiHeps on Cytodex 3 in SFM were close to those of hiHeps on Cytodex 3 in hepatocyte maintenance medium (HMM), and cells maintained their morphology and function after harvest on microcarriers. CONCLUSIONS: Serum-free microcarrier culture has important implications for the expansion of a sufficient number of hiHeps prior to the clinical application of BALs.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Transdiferenciação Celular , Hepatócitos/citologia , Fígado Artificial , Albuminas/biossíntese , Adesão Celular , Técnicas de Reprogramação Celular/métodos , Meios de Cultura Livres de Soro , Ciclina D1/metabolismo , Dextranos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Integrina beta1/metabolismo , L-Lactato Desidrogenase/metabolismo , Sistema de Sinalização das MAP Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ureia/metabolismo
19.
Int J Mol Sci ; 21(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294921

RESUMO

Recent advancement in cartilage tissue engineering has explored the potential of 3D culture to mimic the in vivo environment of human cartilaginous tissue. Three-dimensional culture using microspheres was described to play a role in driving the differentiation of mesenchymal stem cells to chondrocyte lineage. However, factors such as mechanical agitation on cell chondrogenesis during culture on the microspheres has yet to be elucidated. In this study, we compared the 2D and 3D culture of bone-marrow-derived mesenchymal stem cells (BMSCs) on gelatin microspheres (GMs) in terms of MSC stemness properties, immune-phenotype, multilineage differentiation properties, and proliferation rate. Then, to study the effect of mechanical agitation on chondrogenic differentiation in 3D culture, we cultured BMSCs on GM (BMSCs-GM) in either static or dynamic bioreactor system with two different mediums, i.e., F12: DMEM (1:1) + 10% FBS (FD) and chondrogenic induction medium (CIM). Our results show that BMSCs attached to the GM surface and remained viable in 3D culture. BMSCs-GM proliferated faster and displayed higher stemness properties than BMSCs on a tissue culture plate (BMSCs-TCP). GMs also enhanced the efficiency of in-vitro chondrogenesis of BMSCs, especially in a dynamic culture with higher cell proliferation, RNA expression, and protein expression compared to that in a static culture. To conclude, our results indicate that the 3D culture of BMSCs on gelatin microsphere was superior to 2D culture on a standard tissue culture plate. Furthermore, culturing BMSCs on GM in dynamic culture conditions enhanced their chondrogenic differentiation.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Condrogênese , Gelatina , Células-Tronco Mesenquimais/citologia , Microesferas , Alicerces Teciduais , Animais , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares
20.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164316

RESUMO

The concept of three-dimensional (3D) cell culture has been proposed to maintain cellular morphology and function as in vivo. Among different approaches for 3D cell culture, microcarrier technology provides a promising tool for cell adhesion, proliferation, and cellular interactions in 3D space mimicking the in vivo microenvironment. In particular, microcarriers based on biopolymers have been widely investigated because of their superior biocompatibility and biodegradability. Moreover, through bottom-up assembly, microcarriers have opened a bright door for fabricating engineered tissues, which is one of the cutting-edge topics in tissue engineering and regeneration medicine. This review takes an in-depth look into the recent advancements of microcarriers based on biopolymers-especially polysaccharides such as chitosan, chitin, cellulose, hyaluronic acid, alginate, and laminarin-for 3D cell culture and the fabrication of engineered tissues based on them. The current limitations and potential strategies were also discussed to shed some light on future directions.


Assuntos
Biopolímeros/química , Técnicas de Cultura de Células/métodos , Engenharia Tecidual/métodos , Adesão Celular , Proliferação de Células , Células Cultivadas , Humanos , Microtecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA