Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210254

RESUMO

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Assuntos
Biodegradação Ambiental , Cádmio , Cobre , Ácido Edético , Helianthus , Ácidos Indolacéticos , Poluentes do Solo , Zea mays , Cádmio/metabolismo , Ácido Edético/farmacologia , Cobre/metabolismo , Poluentes do Solo/metabolismo , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Biomassa , Solo/química
2.
Ecotoxicol Environ Saf ; 274: 116189, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461579

RESUMO

Throughout the literature, the word "heavy metal" (HM) has been utilized to describe soil contamination; in this context, we characterize it as those elements with a density greater than 5 g per cubic centimeter. Contamination is one of the major global health concerns, especially in China. China's rapid urbanization over the past decades has caused widespread urban water, air, and soil degradation. This study provides a complete assessment of the soil contamination caused by heavy metals in China's mining and smelting regions. The study of heavy metals (HMs) includes an examination of their potential adverse impacts, their origins, and strategies for the remediation of soil contaminated by heavy metals. The presence of heavy metals in soil can be linked to both natural and anthropogenic processes. Studies have demonstrated that soils contaminated with heavy metals present potential health risks to individuals. Children are more vulnerable to the effects of heavy metal pollution than adults. The results highlight the significance of heavy metal pollution caused by mining and smelting operations in China. Soil contaminated with heavy metals poses significant health concerns, both carcinogenic and non-carcinogenic, particularly to children and individuals living in heavily polluted mining and smelting areas. Implementing physical, chemical, and biological remediation techniques is the most productive approach for addressing heavy metal-contaminated soil. Among these methods, phytoremediation has emerged as a particularly advantageous option due to its cost-effectiveness and environmentally favorable characteristics. Monitoring heavy metals in soils is of utmost importance to facilitate the implementation of improved management and remediation techniques for contaminated soils.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Biodegradação Ambiental , Medição de Risco
3.
Int J Phytoremediation ; : 1-10, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324404

RESUMO

The study investigates the ability of selected tree species to absorb heavy metals (Pb, Ni, Zn) from polluted soils. Seedlings of Adansonia digitata (P1), Jatropha curcas (P2), and Hildegardia barteri (P3) were transplanted into polythene pots with soils from a dumpsite (T1), highway (T2), industrial area (T3), and farmland (T4), forming a 3x4 factorial experiment replicated five times in a Completely Randomized Block Design. Pre-sowing analysis showed T1 and T2 had the highest Pb and Zn concentrations, T3 had the highest Ni, and T4 had the lowest heavy metal concentrations. After 12 weeks, heavy metal concentrations decreased in all soils. P1 concentrated metals in the root, P2 in the shoot, and P3 in various plant parts, with significant differences between species. P2 was identified as an effective phytoextractor for Pb and Zn (TF > 1), and P3 for Ni. All species showed potential for phytostabilization. The study concludes that these species are viable options for phytoremediation of heavy metals in contaminated soils.


The study examines the effectiveness of indigenous tree species in phytoremediation, highlighting the importance of using species adapted to local ecosystems for successful land restoration.

4.
Int J Phytoremediation ; 26(9): 1439-1452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494751

RESUMO

Heavy metal pollution threatens food security by accumulating in crops and soils, posing a significant challenge to modern agriculture due to its high toxicity. Urgent action is needed to restore affected agricultural fields. An efficient way to remove toxins is by bioremediation, which uses microorganisms. With the purpose of restoring soil in agriculture, this research attempts to assemble a consortium of microorganisms isolated from techno-genic soil. A number of promising strains, including Pseudomonas putida, Pantoea sp., Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens were chosen based on their capacity to eliminate heavy metals from tests. Heavy metal removal (Cd, Hg, As, Pb, and Ni) and phytohormone production have been shown to be effective using consortiums (Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens in a 1:1:2). In instances with mixed heavy-metal contamination, aeruginosa demonstrated efficacy because of its notable ability to absorb substantial quantities of heavy metals. The capacity of the cooperation to improve phytoremediation was investigated, with an emphasis on soil cleanup in agricultural areas. When combined with Sorghum bicolor L., it was able to remove roughly 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb from the soil.


Revolutionizing soil restoration, harnessing microbial consortia for effective heavy metal remediation, consortium D's remarkable capacity to combat mixed heavy metal contamination, and elevating phytoremediation potential by 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb removal are promising steps toward sustainable agriculture and enhanced food security.


Assuntos
Biodegradação Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Sorghum , Solo/química , Produtos Agrícolas
5.
World J Microbiol Biotechnol ; 40(11): 336, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358660

RESUMO

Soil and wastewater samples contaminated by petroleum-related industries were collected from various locations in Saudi Arabia, a country known for its vast oil reserves. The samples were analyzed for their physicochemical properties, including the presence of metals, petroleum hydrocarbons, and aromatic compounds. A total of 264 fungal isolates were analyzed and categorized into eight groups of Aspergillus (194 isolates) and four groups of Penicillium (70 isolates). The potential of these fungal groups to grow in oil or its derivatives was investigated. Two isolates, Aspergillus tubingensis FA-KSU5 and A. niger FU-KSU69, were utilized in two remediation experiments-one targeting wastewater and the other focusing on polluted soil. The FA-KSU5 strain demonstrated complete removal of Fe3+, As3+, Cr6+, Zn2+, Mn2+, Cu2+ and Cd2+, with bioremediation efficiency for petroleum hydrocarbons in the wastewater from these sites ranging between 90.80 and 98.58%. Additionally, the FU-KSU69 strain achieved up to 100% reduction of Co2+, Ba2+, B3+, V+, Ni2+, Pb2+ and Hg2+, with removal efficiency ranging from 93.17 to 96.02% for aromatic hydrocarbons after 180 min of wastewater treatment. After 21 days of soil incubation with Aspergillus tubingensis FA-KSU5, there was a 93.15% to 98.48% reduction in total petroleum hydrocarbons (TPHs) and an 88.11% to 97.31% decrease in polycyclic aromatic hydrocarbons (PAHs). This strain exhibited the highest removal rates for Cd2+ and As3+ followed by Fe3+, Zn2+, Cr6+, Se4+ and Cu2+. Aspergillus niger FU-KSU69 achieved a 90.37% to 94.90% reduction in TPHs and a 95.13% to 98.15% decrease in PAHs, with significant removal of Ni2+, Pb2+ and Hg2+, followed by Co2+, V+, Ba2+ and B3+. The enzymatic activity in the treated soils increased by 1.54- to 3.57-fold compared to the polluted soil. Although the mixture of wastewater and polluted soil exhibited high cytotoxicity against normal human cell lines, following mycoremediation, all treated soils and effluents with the dead fungal biomass showed no toxicity against normal human cell lines at concentrations up to 500 µL/mL, with IC50 values ≥ 1000 µL/mL. SEM and IR analysis revealed morphological and biochemical alterations in the biomass of A. tubingensis FA-KSU5 and A. niger FA-KSU69 when exposed to petroleum effluents. This study successfully introduces non-toxigenic and environmentally friendly fungal strains play a crucial role in the bioremediation of contaminated environments. Both strains serve as low-cost and effective adsorbents for bio-remediating petroleum wastewater and oil-contaminated soil. Heavy metals and hydrocarbons, the primary pollutants, were either completely removed or reduced to permissible levels according to international guidelines using the dead biomass of FA-KSU5 and FA-KSU69 fungi. Consequently, the environments associated with this globally significant industry are rendered biologically safe, particularly for humans, as evidenced by the absence of cytotoxicity in samples treated with A. tubingensis FA-KSU5 and A. niger FA-KSU69 on various human cell types.


Assuntos
Aspergillus , Biodegradação Ambiental , Petróleo , Microbiologia do Solo , Poluentes do Solo , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/classificação , Penicillium/metabolismo , Penicillium/isolamento & purificação , Arábia Saudita , Poluição por Petróleo , Fungos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Metais/metabolismo , Solo/química , Hidrocarbonetos/metabolismo
6.
Environ Res ; 238(Pt 2): 117183, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769830

RESUMO

This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Solo , Sulfetos
7.
Environ Res ; 232: 116295, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263472

RESUMO

This investigation was performed to evaluate the metal pollution and possible phytoremediation on bauxite mine surrounding farmland soil. The quality analysis results revealed that, the soil has been polluted with metals such as Al (13.25 ± 0.54 mg kg-1), Pb (336.18 ± 7.17 mg kg-1), Zn (382.18 ± 3.05 mg kg-1), and Cd (11.32 ± 0.28 mg kg-1) and possess poor essential element content. The test bacterium Pseudomonas aeroginosa showed considerable metal tolerance up to 100 mg kg-1 concentration of metals such as Al, Pb, Zn, and Cd. Besides that, it also possesses essential plant growth promoting traits such as sederophore, IAA, nitrogen fixation, and phosphate solubilization. The test bacterium P. aeroginosa demonstrated optimistic influence on the growth and phytoremediation ability of Jatropha gossypifolia on metal-polluted soil under greenhouse experiment with different treatment groups (I-V). Group I (J. gossypifolia seeds coated with P. aeroginosa) showed outstanding phytoremediation potential on metal polluted soil than other treatment groups. The group I reduced considerable quantity of metals (Al 42.79%, Pb 36.57%, Zn 47.06%, and Cd 39.57%) from the treated soil. It was significantly higher than the remediation potential of other treatment groups (II-V). These findings suggest that P. aeroginosa's metal tolerant and PGP characters can effectively influence the growth and phytoremediation potential of J. gossypifolia on metal polluted soil.


Assuntos
Jatropha , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Metais Pesados/análise , Cádmio/análise , Pseudomonas aeruginosa , Solo , Chumbo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Bactérias
8.
Bioprocess Biosyst Eng ; 46(3): 373-379, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35773493

RESUMO

Bauxite wastewater creates soil contamination and produces toxic effects on human health such as respiratory and skin rash problems. In this study, we investigated the phytoremediation ability of Jatropha curcas to remove bauxite wastewater from soil. Pot experiments were conducted to investigate the bauxite wastewater on the phytoremediation potential of J. curcas grown in contaminated soils. J. curcas exhibited a significant increase in plant growth leaf, root activity, plant height, and plant shoot when grown in bauxite contaminated soils compared with J. curcas grown in uncontaminated soils after 30 d treatment. Under bauxite exposure, a higher aluminium removal (88.5%) was observed in soils planted with J. curcas than unplanted soils (39.6%). The bioconcentration factor was also found to be 5.62, indicating that J. curcas have great tolerance and hyperaccumulator of aluminium under high aluminium concentrations and are capable of phytoextraction of soil contaminated with bauxite wastewater.


Assuntos
Jatropha , Poluentes do Solo , Humanos , Biodegradação Ambiental , Águas Residuárias , Óxido de Alumínio , Alumínio , Solo
9.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34668849

RESUMO

This paper presents a polyphasic taxonomic study of a Gram-stain-negative bacterium designated GA093T, a soil isolate capable of benzo(α)pyrene degradation. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain GA093T is a member of the genus Flavobacterium, and formed an independent phylogenetic line while clustering with the type strains of Flavobacterium hibernum, Flavobacterium branchiarum and Flavobacterium hydatis. Strain GA093T was facultatively anaerobic, and could grow at 4-33 °C (optimum, 30 °C), at pH 6-11 (optimum, pH 7) and in the presence of 0-2 % (w/v) NaCl (optimum, 0 %). Strain GA093T was capable of producing acid from various carbon sources, which was comparable to other related species of Flavobacterium. The strain contained MK-6 as the only isoprenoid quinone, iso-C15 : 0 as the major cellular fatty acid, phosphatidylethanolamine and phosphatidylinositol as diagnostic polar lipids, and sym-homospermidine as the major polyamine. The chemotaxonomic properties of strain GA093T were consistent with the general properties of Flavobacterium except the presence of phosphatidylinositol, which distinguished it from other related species. The total stretch of the obtained genome of GA093T was 5.05 Mbp, and the DNA G+C content was 34.79 mol%. The genome contained genes potentially related to the degradation of aromatic hydrocarbons. On the basis of the present polyphasic analysis, strain GA093T was found to have properties that distunguished it as representing a novel species of the genus Flavobacterium, for which the name Flavobacterium hydrocarbonoxydans sp. nov. is proposed. The type strain is GA093T (=KCTC 72594T=LMG 31760T).


Assuntos
Flavobacterium , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Poluição Ambiental , Ácidos Graxos/química , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Fosfolipídeos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Environ Res ; 200: 111732, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324849

RESUMO

SO42-, a major component of acid mine drainage (AMD), plays an important role in study environment of AMD. We investigated the distribution and adsorption-desorption mechanisms of SO42- and the variation of stable isotope of sulfur (δ34S) values in the soil profile polluted by AMD. Results showed that the species and 34S values of SO42- differed significantly among different soil depths. In the surface soil (0-20 cm), native water-soluble SO42- (WSS) in the range ~85 % total SO42- was the dominant species. There was a peak of adsorption, which correlated significantly with amorphous oxide Fe, indicating that iron oxides and pH was fundamentally proportional to SO42- forms. The high concentrations of Cu2+ and Pb2+ also played important roles in form of SO42- in soil profile. Desorption kinetics of explained three SO42--bound forms. The trend mean δ34S values of WSS and AS in soil vertical profile was very similar with increasing from surface to subsurface, and have lower δ34S values than those of total sulfur, indicating that mineralization of organic sulfur should produce SO42- that was more depleted in δ34S. SO42- desorbed and trend δ34S values could provide reasonable explanation for the migration of SO42-. In the AMD irrigation scope, the higher SO42- concentration was reserved by immobilized as organic sulfur, and then main approach of SO42- migration was desorption and organic sulfur mineralize in now stage.


Assuntos
Poluentes do Solo , Solo , Mineração , Poluentes do Solo/análise , Sulfatos , Enxofre
11.
Biodegradation ; 32(2): 145-163, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33586077

RESUMO

Soil is the recipient of organic pollutants as a consequence of anthropogenic activities. Hydrocarbons are contaminants that pose a risk to human and environmental health. Bioremediation of aging contaminated soils is a challenge due to the low biodegradability of contaminants as a result of their interaction with the soil matrix. The aim of this work was to evaluate the effect of both composting and the addition of mature compost on a soil chronically contaminated with hydrocarbons, focusing mainly on the recovery of soil functions and transformations of the soil matrix as well as microbial community shifts. The initial pollution level was 214 ppm of polycyclic aromatic hydrocarbons (PAHs) and 2500 ppm of aliphatic hydrocarbons (AHs). Composting and compost addition produced changes on soil matrix that promoted the release of PAHs (5.7 and 15 % respectively) but not the net PAH elimination. Interestingly, composting stimulated AHs elimination (about 24 %). The lack of PAHs elimination could be attributed to the insufficient PAHs content to stimulate the microbial degrading capacity, and the preferential consumption of easily absorbed C sources by the bacterial community. Despite the low PAH catabolic potential of the aging soil, metabolic shift was driven by the addition of organic matter, which could be monitored by the ratio of Proteobacteria to Actinobacteria combined with E4/E6 ratio. Regarding the quality of the soil, the nutrients provided by the exogenous organic matter contributed to the recovery of the global functions and species diversity of the soil along with the reduction of phytotoxicity.


Assuntos
Compostagem , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Humanos , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
12.
Ecotoxicol Environ Saf ; 208: 111605, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396125

RESUMO

This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.


Assuntos
Dióxido de Carbono/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Bioacumulação , Clorofila/metabolismo , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
13.
Ecotoxicol Environ Saf ; 227: 112927, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34700167

RESUMO

Treatment with chemical amendments is among the best techniques to remediate soils highly polluted with trace elements. The use of waste-derived products has several advantages in this regard, mainly in terms of reducing process costs and conserving natural resources. In this study, the performance of the synthetic zeolite NaP1 derived from coal combustion fly ash (SZ) and the by-product generated from the processing of aluminum salt slags (BP) was evaluated with this aim in comparison to calcite (CC). For this purpose, mine soils polluted with Zn, Cd, and Pb were amended under controlled laboratory conditions with different doses (0%, 1%, 2%, 5%, and 10%) of SZ, BP, or CC, and their impact on trace element mobility and microbial functions was evaluated. Specifically, the mobile and mobilizable trace element pools, basal soil respiration, and different enzyme activities were analyzed. Both SZ and BP performed better than CC in the immobilization of trace elements, reaching, respectively, mobility decreases up to 89-94% and 66-87% when applied at a dose of 10%. These amendments reduced the mobile trace element pool by precipitating them as acid-soluble precipitates and/or retaining them in the reducible fraction of soils. The alkaline nature of these materials and the concomitant increase in soil pH caused by their application mainly accounted for this behavior. Additionally, soil microbial functionality improved after amendment, especially in the case of SZ, as shown by dehydrogenase and alkaline phosphatase activities, which significantly increased (p < 0.05) up to 536% and 48%, respectively. Therefore, applying SZ or BP as soil amendments can significantly decrease the mobile trace element contents of heavily polluted soils without negatively affecting soil quality, thus facilitating plant growth to revegetate and reclaim degraded spaces.


Assuntos
Poluentes do Solo , Oligoelementos , Cinza de Carvão , Poluição Ambiental , Solo , Poluentes do Solo/análise , Oligoelementos/análise
14.
J Environ Manage ; 278(Pt 1): 111410, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113394

RESUMO

Until the complete transition to a renewable energy sources based economy, the potential environmental hazards associated with petroleum refinery industries affecting water, air and soil seek sustainable solutions. In the present study contaminated soil from a refinery is used as an alternative source for producing useful building materials by geopolymerization. To this end, soil remediation by thermal desorption was initially applied. Thermal treatment was performed between 60 and 250 °C for short time intervals (10-30 min) in order to remove organic pollutants (Total Petroleum Hydrocarbons, TPHs and Polycyclic Aromatic Hydrocarbons, PAHs). Physical, chemical analyses, mineral phase composition, as well as thermogravimetric analysis were employed to characterize the sample. Moreover, removal efficiency of TPHs and PAHs was evaluated. Subsequently, the treated soil presenting the maximum elimination of TPH and PAHs was used in geopolymer mortar formation aiming to stabilize the toxic metals (TMs) and produce a possible profitable material. For geopolymer synthesis the substitution of metakaolin (MT) by treated soil at 0, 50, 70 and 100% was tested. The produced specimens were evaluated based on the 28 day compressive strength and metals leaching. Results showed that the geopolymer constructed by 50% MT-50% remediated soil at 250 °C for 30 min, had negligible content of organic pollutants, TMs were immobilized and exhibited increased strength thus giving significant recycling benefits. Valorisation of industrial residues to produce building materials is a promising solution for sustainable waste management.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
15.
J Environ Manage ; 277: 111424, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038673

RESUMO

The aim of this work is to compare three biological strategies for the in situ remediation of a 2,4-dichlorophenoxyacetic acid (2,4-D) polluted clayey soil by coupling electrokinetics (EK) and bioremediation (technology named as electrobioremediation, EBR). The first option (i) is EK-biostimulation, in which the activity of microorganisms already present in soil is enhanced by EK phenomena. The second and third options are EK-bioaugmentation, which consist of addition of microorganisms to soil through the inclusion of permeable biological barriers: (ii) using a microbial fixed biofilm reactor as biobarrier (BB1), and (iii) using a mixture of clean soil and a microbial suspension as biobarrier (BB2). Thus, three batch experiments at bench scale were conducted under a constant electric field of 1 V cm-1, and electrode polarity was periodically reversed every 12 h (2 d-1). The duration of each test was 10 days. Two additional tests using only biodegradation or only EK were performed as auxiliary reference tests. A microbial consortium acclimated to 2,4-D biodegradation was employed. Results showed that EK-biostimulation strategy offered the best pollutant removal efficiency (reaching up almost 100%) while biobarriers offered pollutant removal rates between 75 and 85%. Permeable biobarriers allowed the introduction of microorganism but caused a decrease in the electro-osmotic flow which, in turn, reduced the mobilization and contact between microorganisms and pollutants. These results can contribute to the knowledge and understanding of electrobioremediation of polluted soil and to the feasibility of delivering microorganism to the soil by using biobarriers. Despite biostimulation was found to be the best option, results show that permeable reactive biobarriers may result in a successful alternative for in-situ EK-bioaugmentation when acclimated microbial population is not already present in soil.


Assuntos
Herbicidas , Poluentes do Solo , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Solo , Microbiologia do Solo , Poluentes do Solo/análise
16.
Bull Environ Contam Toxicol ; 107(6): 1155-1160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34236456

RESUMO

Agricultural arsenic (As, CAS. No. 7440-38-2) over the issue of pollution has been related to people's livelihood, security and moderate use of As contaminated soil is an important aspect of contaminated soil remediation. In this potted plant experiment, synergistic effects of arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and iron (Fe, CAS. No. 7439-89-6) oxides on plant growth and phosphorus (P, CAS. No. 7723-14-0), As and Fe uptake by maize (Zea mays L.) were studied on simulating medium As-polluted soils in greenhouse. Different amounts (0, 5, 10, 20, 40 g kg- 1) of iron tailings (IT) were added. The results showed that IT20 and IT40 addition significantly increased mycorrhizal infection rate, plant biomass, root length and P, Fe uptake under FM treatment; IT40 addition decreased As concentration in roots. In addition, FM inoculation increased biomass, root length and P uptake by shoots, but decreased Fe and As concentration in shoots. Therefore, the combined FM inoculation and IT40 addition promoted maize growth and decreased As concentration in shoots by decreasing As absorption efficiency, increasing P and Fe uptake and P/As ratio.


Assuntos
Arsênio , Micorrizas , Poluentes do Solo , Arsênio/toxicidade , Biodegradação Ambiental , Fungos , Ferro , Micorrizas/química , Fósforo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
17.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187080

RESUMO

Soil is a complex matrix where biotic and abiotic components establish a still unclear network involving bacteria, fungi, archaea, protists, protozoa, and roots that are in constant communication with each other. Understanding these interactions has recently focused on metagenomics, metatranscriptomics and less on metaproteomics studies. Metaproteomic allows total extraction of intracellular and extracellular proteins from soil samples, providing a complete picture of the physiological and functional state of the "soil community". The advancement of high-performance mass spectrometry technologies was more rapid than the development of ad hoc extraction techniques for soil proteins. The protein extraction from environmental samples is biased due to interfering substances and the lower amount of proteins in comparison to cell cultures. Soil sample preparation and extraction methodology are crucial steps to obtain high-quality resolution and yields of proteins. This review focuses on the several soil protein extraction protocols to date to highlight the methodological challenges and critical issues for the application of proteomics to soil samples. This review concludes that improvements in soil protein extraction, together with the employment of ad hoc metagenome database, may enhance the identification of proteins with low abundance or from non-dominant populations and increase our capacity to predict functional changes in soil.


Assuntos
Bactérias/metabolismo , Plantas/microbiologia , Proteoma/metabolismo , Solo/química , Metagenômica/métodos , Proteômica/métodos , Microbiologia do Solo
18.
Rev Argent Microbiol ; 52(2): 145-149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31272727

RESUMO

The Riachuelo river basin (RRB) is considered one of the most polluted environments in the world. Knowledge of arbuscular mycorrhizal fungi (AMF) adapted to this extremely polluted environment is important for the establishment of future soil restoration projects. This work aims to make a first list of AMF species present on the RRB. Soil and root samples were randomly taken in an area of approximately 1500m2, mycorrhization percentages were evaluated. AMF species were detected by molecular and morphological techniques. Sixteen AMF morphological species and 64 molecular species were reported in this work. Dominikia iranica, Funneliformis constrictum, Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis and Septoglomus viscosum were detected by both techniques while Claroideoglomus sp. was only detected by pyrosequencing. The list of species reported in this work represents the first description of the RRB AMF community.


Assuntos
Poluição Ambiental , Metais Pesados , Micorrizas/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo , Argentina , Rios
19.
Environ Res ; 170: 366-373, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623883

RESUMO

Stabilization is an emerging technology for the cost-effective remediation of heavy metals polluted soils. To evaluate the potential of water treatment residual nanoparticles (nWTR) in reducing Hg and Cr mobility in contaminated calcareous soil, sorption-desorption kinetics; speciation and fractionation experiments were performed. Application of nWTR strongly enhanced Cr and Hg sorbed in the calcareous soil, whereas the released amount of both metals through 6 successive desorption steps dramatically decreased. The power function model best described the desorption kinetic data of Cr and Hg from nWTR amended and non-amended calcareous soil. Fractionation experiment data demonstrated that nWTR amendment significantly increased metals concentration in the residual fraction (RS) and simultaneously decreased the more accessible forms of Hg and Cr. Addition of nWTR at a rate of 0.3% to the contaminated calcareous soil significantly increased Hg and Cr in the RS fraction from 69.27% and52.62% to 93.89% and 90.05% respectively. Additionally, the formation of stable Hg and Cr species such as Hg(OH)2 amor, CrSO4. xH2O and Cr(OH)2) were increased as a result of nWTR application. These findings jointly indicate the enhancement of Hg and Cr immobilization in the nWTR amended calcareous soil. FTIR spectroscopy analysis indicated the contribution of OH group and Al-O-Si of nWTR in Hg and Cr sorption process and suggests chemo-sorption reaction between both metals and the nWTR surface functional groups. Overall, the final results confirm the strong capability of nWTR application in reducing Hg and Cr risks in highly contaminated sites of the calcareous soil.


Assuntos
Cromo/análise , Mercúrio/análise , Nanopartículas/química , Poluentes do Solo/análise , Cromo/química , Cinética , Mercúrio/química , Solo , Poluentes do Solo/química
20.
Ecotoxicol Environ Saf ; 168: 348-355, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30391839

RESUMO

Earthworms have been widely studied as bioindicators of soil health for their important role in sustaining soil structure and functions. Many soil contaminants such as phenanthrene have been confirmed to exert adverse effects on earthworms' growth, reproduction, behaviors and biochemical conditions. However, their effects on the properties of earthworm casts have been little studied. In the present study, the effect of different doses of phenanthrene (PHE) (0, 2, 5, 10, 20 mg/kg) on the six physicochemical properties and Fourier transform infrared spectroscopy (FTIR) spectra characteristics of earthworm casts was assessed in artificial soil in a laboratory. 1) Residual concentration of PHE in soils and casts increased with the increasing exposure concentrations and followed the order of casts > soil, concluding that Kow values are the important factor affecting the distribution of hydrophobic organic contaminants (HOCs) in soil and casts; 2) Earthworms produced casts with improved total organic carbon (TOC) (15-19%), NH4+-N (550-800%), total available phosphorus (TAP) (300-450%), cation exchange capacity (CEC) (about 15%) and available potassium (AK) (7-12.6%) compared to that in unpolluted soil, indicating that earthworms still have the ability to play the role of ecological engineers even in polluted soil; 3) The sensitivity of different properties of casts to phenanthrene varies, the order of sensitivity being (most sensitive first) NH4+-N ( triggered as 2 mg/kg of exposure concentrations) > AK (5 mg/kg) > Olsen-P (10 mg/kg) > TOC = pH= CEC (no response within the range of exposure concentrations). NH4+-N content in casts shows a clear dose-response relationship when the exposure exceeds 2 mg/kg, indicating that the index might be a potential sensitive biomarker to provide early warning for soil pollution. 4) FTIR spectra showed that the constitution of casts from earthworms in PHE-spiked soil was not significantly alternated. However, FTIR spectra revealed that the concentrations of C-O of polysaccharide in casts increased with the elevated exposure concentrations, indicating that intensities of C-O of polysaccharide at 1032 cm-1 of casts might be also a potential biomarker for the early-warning of soil pollution. This study advances the knowledge of earthworm ecology in polluted soil, and further extends the scope of earthworm casts as a potential biomarker in soil pollution assessment.


Assuntos
Oligoquetos/efeitos dos fármacos , Fenantrenos/análise , Poluentes do Solo/análise , Solo/química , Compostos de Amônio/análise , Animais , Fenômenos Químicos , Poluição Ambiental , Concentração de Íons de Hidrogênio , Fósforo/análise , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA