Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2300838121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300863

RESUMO

Proteins play a central role in biology from immune recognition to brain activity. While major advances in machine learning have improved our ability to predict protein structure from sequence, determining protein function from its sequence or structure remains a major challenge. Here, we introduce holographic convolutional neural network (H-CNN) for proteins, which is a physically motivated machine learning approach to model amino acid preferences in protein structures. H-CNN reflects physical interactions in a protein structure and recapitulates the functional information stored in evolutionary data. H-CNN accurately predicts the impact of mutations on protein stability and binding of protein complexes. Our interpretable computational model for protein structure-function maps could guide design of novel proteins with desired function.


Assuntos
Algoritmos , Redes Neurais de Computação , Proteínas/genética , Aprendizado de Máquina , Aminoácidos
2.
J Biol Chem ; 300(8): 107489, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908753

RESUMO

Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual ß-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for ß-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the ß-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.

3.
Proteins ; 92(6): 693-704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179877

RESUMO

Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding ß-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/ß hydrolase structure and a potential allosteric binding site within human APTs.


Assuntos
Domínio Catalítico , Ligação Proteica , Dobramento de Proteína , Tioléster Hidrolases , Humanos , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ligantes , Modelos Moleculares , Sequência de Aminoácidos , Cinética , Sequência Conservada , Estabilidade Enzimática , Francisella tularensis/enzimologia , Francisella tularensis/metabolismo , Francisella tularensis/química , Cristalografia por Raios X , Especificidade por Substrato
4.
J Virol ; 97(3): e0186522, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36847528

RESUMO

Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable ß5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
5.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339159

RESUMO

KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.


Assuntos
Proteínas Culina , Canais de Potássio , Humanos , Sequência de Aminoácidos , Proteínas Culina/química , Canais de Potássio/química , Ligação Proteica , Multimerização Proteica
6.
J Biol Chem ; 298(3): 101643, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093382

RESUMO

Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.


Assuntos
5-Aminolevulinato Sintetase , Anemia Sideroblástica , Doenças Genéticas Ligadas ao Cromossomo X , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/enzimologia , Anemia Sideroblástica/genética , Animais , Heme , Humanos , Relação Estrutura-Atividade
7.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535060

RESUMO

The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bactérias Gram-Negativas
8.
J Virol ; 96(1): e0141521, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613806

RESUMO

Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in protecting healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids which overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis for developing therapies to prevent and treat human astrovirus gastroenteritis. IMPORTANCE Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block astrovirus infection. Here, we determined the crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind to two distinct sites on the capsid spike domain, however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Capsídeo/imunologia , Epitopos/imunologia , Mamastrovirus/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Epitopos/química , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Ligação Viral
9.
J Virol ; 96(16): e0092922, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35894604

RESUMO

The first critical step in a virus's infection cycle is attachment to its host. This interaction is precise enough to ensure the virus will be able to productively infect the cell, but some flexibility can be beneficial to enable coevolution and host range switching or expansion. Bacteriophage Sf6 utilizes a two-step process to recognize and attach to its host Shigella flexneri. Sf6 first recognizes the lipopolysaccharide (LPS) of S. flexneri and then binds outer membrane protein (Omp) A or OmpC. This phage infects serotype Y strains but can also form small, turbid plaques on serotype 2a2; turbid plaques appear translucent rather than transparent, indicating greater survival of bacteria. Reduced plating efficiency further suggested inefficient infection. To examine the interactions between Sf6 and this alternate host, phages were experimentally evolved using mixed populations of S. flexneri serotypes Y and 2a2. The recovered mutants could infect serotype 2a2 with greater efficiency than the ancestral Sf6, forming clear plaques on both serotypes. All mutations mapped to two distinct regions of the receptor-binding tailspike protein: (i) adjacent to the LPS binding site near the N terminus; and (ii) at the distal, C-terminal tip of the protein. Although we anticipated interactions between the Sf6 tailspike and 2a2 O-antigen to be weak, LPS of this serotype appears to inhibit infection through strong binding of particles, effectively removing them from the environment. The mutations of the evolved strains reduce the inhibitory effect by either reducing electrostatic interactions with the O-antigen or increasing reliance on the Omp secondary receptors. IMPORTANCE Viruses depend on host cells to propagate themselves. In mixed populations and communities of host cells, finding these susceptible host cells may have to be balanced with avoiding nonhost cells. Alternatively, being able to infect new cell types can increase the fitness of the virus. Many bacterial viruses use a two-step process to identify their hosts, binding first to an LPS receptor and then to a host protein. For Shigella virus Sf6, the tailspike protein was previously known to bind the LPS receptor. Genetic data from this work imply the tailspike also binds to the protein receptor. By experimentally evolving Sf6, we also show that point mutations in this protein can dramatically affect the binding of one or both receptors. This may provide Sf6 flexibility in identifying host cells and the ability to rapidly alter its host range under selective pressure.


Assuntos
Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Mutação Puntual , Shigella flexneri/virologia , Proteínas da Cauda Viral/genética , Especificidade de Hospedeiro , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Antígenos O/química , Antígenos O/genética , Antígenos O/metabolismo
10.
J Virol ; 96(9): e0011122, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404083

RESUMO

The rabies virus (RABV) phosphoprotein (P protein) is expressed as several isoforms, which differ in nucleocytoplasmic localization and microtubule (MT) association, mediated by several sequences, including nuclear localization (NLS) and export (NES) sequences. This appears to underpin a functional diversity enabling multiple functions in viral replication and modulation of host biology. Mechanisms regulating trafficking are poorly defined, but phosphorylation by protein kinase C (PKC) in the P protein C-terminal domain (PCTD) regulates nuclear trafficking, mediated by PCTD-localized NLS/NES sequences, indicating that phosphorylation contributes to functional diversity. The molecular mechanism underlying the effects of PKC, and potential roles in regulating other host-cell interactions are unresolved. Here, we assess effects of phosphorylation on the P3 isoform, which differs from longer isoforms through an ability to localize to the nucleus and associate with MTs, which are associated with antagonism of interferon (IFN) signaling. We find that phosphomimetic mutation of the PKC site S210 inhibits nuclear accumulation and MT association/bundling. Structural analysis indicated that phosphomimetic mutation induces no significant structural change to the NLS/NES but results in the side chain of N226 switching its interactions from E228, within the NES, to E210. Intriguingly, N226 is the sole substituted residue between the PCTD of the pathogenic IFN-resistant RABV strain Nishigahara and a derivative attenuated IFN-sensitive strain Ni-CE, inhibiting P3 nuclear localization and MT association. Thus, S210 phosphorylation appears to impact on N226/E228 to regulate P protein localization, with N226 mutation in Ni-CE mimicking a constitutively phosphorylated state resulting in IFN sensitivity and attenuation. IMPORTANCE Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules. Previous studies showed that phosphorylation of the P protein C-terminal domain (PCTD) at S210, near nuclear trafficking sequences, regulates nucleocytoplasmic localization, indicating key roles in functional diversity. The molecular mechanisms of this regulation have remained unknown. Here, we show that phosphomimetic mutation of S210 regulates nuclear localization and MT association. This regulation does not appear to result from disrupted PCTD structure, but rather from a switch of specific side chain interactions of N226. Intriguingly, N226 was previously implicated in P protein nuclear localization/MT association, immune evasion, and RABV pathogenesis, through undefined mechanisms. Our data indicate that the S210-N226 interface is a key regulator of virus-host interactions, which is significant for pathogenesis.


Assuntos
Chaperonas Moleculares , Vírus da Raiva , Proteínas Estruturais Virais , Animais , Núcleo Celular/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo
11.
J Virol ; 96(9): e0216421, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35435730

RESUMO

Two new structures of the N-terminal domain of the main replication protein, NS1, of human parvovirus B19 (B19V) are presented here. This domain (NS1-nuc) plays an important role in the "rolling hairpin" replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e., nicking) single-stranded DNA at a nearby site known as the terminal resolution site (trs). The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain; however, it is shown here at a significantly higher resolution (2.4 Å). Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented that predict residues important for DNA cleavage and for sequence-specific recognition at the viral origin of replication. IMPORTANCE The high-resolution structure of the DNA binding and cleavage domain of the main replicative protein, NS1, from the human-pathogenic virus human parvovirus B19 is presented here. Included also are predictions of how the protein recognizes important sequences in the viral DNA which are required for viral replication. These predictions can be used to further investigate the function of this protein, as well as to predict the effects on viral viability due to mutations in the viral protein and viral DNA sequences. Finally, the high-resolution structure facilitates structure-guided drug design efforts to develop antiviral compounds against this important human pathogen.


Assuntos
Modelos Moleculares , Parvovirus B19 Humano , Proteínas não Estruturais Virais , DNA Viral/genética , Endonucleases/química , Endonucleases/genética , Humanos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/química , Replicação Viral/genética
12.
J Inherit Metab Dis ; 46(6): 1170-1185, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540500

RESUMO

CAD is a large, 2225 amino acid multienzymatic protein required for de novo pyrimidine biosynthesis. Pathological CAD variants cause a developmental and epileptic encephalopathy which is highly responsive to uridine supplements. CAD deficiency is difficult to diagnose because symptoms are nonspecific, there is no biomarker, and the protein has over 1000 known variants. To improve diagnosis, we assessed the pathogenicity of 20 unreported missense CAD variants using a growth complementation assay that identified 11 pathogenic variants in seven affected individuals; they would benefit from uridine treatment. We also tested nine variants previously reported as pathogenic and confirmed the damaging effect of seven. However, we reclassified two variants as likely benign based on our assay, which is consistent with their long-term follow-up with uridine. We found that several computational methods are unreliable predictors of pathogenic CAD variants, so we extended the functional assay results by studying the impact of pathogenic variants at the protein level. We focused on CAD's dihydroorotase (DHO) domain because it accumulates the largest density of damaging missense changes. The atomic-resolution structures of eight DHO pathogenic variants, combined with functional and molecular dynamics analyses, provided a comprehensive structural and functional understanding of the activity, stability, and oligomerization of CAD's DHO domain. Combining our functional and protein structural analysis can help refine clinical diagnostic workflow for CAD variants in the genomics era.


Assuntos
Di-Hidro-Orotase , Proteínas , Humanos , Di-Hidro-Orotase/química , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Mutação de Sentido Incorreto , Uridina
13.
Drug Dev Res ; 84(5): 999-1007, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129190

RESUMO

Given the ever-present threat of antibacterial resistance, there is an urgent need to identify new antibacterial drugs and targets. One such target is alanine racemase (Alr), an enzyme required for bacterial cell-wall biosynthesis. Alr is an attractive drug target because it is essential for bacterial survival but is absent in humans. Existing drugs targeting Alr lack specificity and have severe side effects. We here investigate alternative mechanisms of Alr inhibition. Alr functions exclusively as an obligate homodimer, so we probed seven conserved interactions on the dimer interface, distant from the enzymatic active site, to identify possible allosteric influences on activity. Using the Alr from Mycobacterium tuberculosis (MT) as a model, we found that the Lys261/Asp135 salt bridge is critical for catalytic activity. The Lys261Ala mutation completely inactivated the enzyme, and the Asp135Ala mutation reduced catalytic activity eight-fold. Further investigation suggested a potential drug-binding site near the Lys261/Asp135 salt bridge that may be useful for allosteric drug discovery.


Assuntos
Alanina Racemase , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacologia , Alanina Racemase/genética , Alanina Racemase/química , Alanina Racemase/metabolismo , Domínio Catalítico , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana
14.
J Biol Chem ; 297(4): 101176, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508780

RESUMO

Cysteamine dioxygenase (ADO) plays a vital role in regulating thiol metabolism and preserving oxygen homeostasis in humans by oxidizing the sulfur of cysteamine and N-terminal cysteine-containing proteins to their corresponding sulfinic acids using O2 as a cosubstrate. However, as the only thiol dioxygenase that processes both small-molecule and protein substrates, how ADO handles diverse substrates of disparate sizes to achieve various reactions is not understood. The knowledge gap is mainly due to the three-dimensional structure not being solved, as ADO cannot be directly compared with other known thiol dioxygenases. Herein, we report the first crystal structure of human ADO at a resolution of 1.78 Å with a nickel-bound metal center. Crystallization was achieved through both metal substitution and C18S/C239S double mutations. The metal center resides in a tunnel close to an entry site flanked by loops. While ADO appears to use extensive flexibility to handle substrates of different sizes, it also employs proline and proline pairs to maintain the core protein structure and to retain the residues critical for catalysis in place. This feature distinguishes ADO from thiol dioxygenases that only oxidize small-molecule substrates, possibly explaining its divergent substrate specificity. Our findings also elucidate the structural basis for ADO functioning as an oxygen sensor by modifying N-degron substrates to transduce responses to hypoxia. Thus, this work fills a gap in structure-function relationships of the thiol dioxygenase family and provides a platform for further mechanistic investigation and therapeutic intervention targeting impaired oxygen sensing.


Assuntos
Dioxigenases/química , Oxigênio/química , Substituição de Aminoácidos , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Mutação de Sentido Incorreto , Níquel/química , Níquel/metabolismo , Oxigênio/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
15.
J Cell Biochem ; 123(1): 22-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339540

RESUMO

In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Processamento Alternativo , Proteínas Reguladoras de Apoptose/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Chaperonas Moleculares/química , Ligação Proteica , Processamento de Proteína , Estrutura Terciária de Proteína
16.
Mol Biol Evol ; 38(8): 3235-3246, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779753

RESUMO

Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use the experimental data to find residues important for enzymatic activity. We performed computational analyses of protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experimental studies of different properties of protein fitness landscapes.


Assuntos
Substituição de Aminoácidos , PTEN Fosfo-Hidrolase/genética , Estabilidade Proteica , Pirofosfatases/genética , Relação Estrutura-Atividade , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Dobramento de Proteína , Pirofosfatases/metabolismo
17.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827946

RESUMO

Broadly neutralizing antibodies (bNAbs) are the focus of increasing interest for human immunodeficiency virus type 1 (HIV-1) prevention and treatment. Although several bNAbs are already under clinical evaluation, the development of antibodies with even greater potency and breadth remains a priority. Recently, we reported a novel strategy for improving bNAbs against the CD4-binding site (CD4bs) of gp120 by engraftment of the elongated framework region 3 (FR3) from VRC03, which confers the ability to establish quaternary interactions with a second gp120 protomer. Here, we applied this strategy to a new series of anti-CD4bs bNAbs (N49 lineage) that already possess high potency and breadth. The resultant chimeric antibodies bound the HIV-1 envelope (Env) trimer with a higher affinity than their parental forms. Likewise, their neutralizing capacity against a global panel of HIV-1 Envs was also increased. The introduction of additional modifications further enhanced the neutralization potency. We also tried engrafting the elongated CDR1 of the heavy chain from bNAb 1-18, another highly potent quaternary-binding antibody, onto several VRC01-class bNAbs, but none of them was improved. These findings point to the highly selective requirements for the establishment of quaternary contact with the HIV-1 Env trimer. The improved anti-CD4bs antibodies reported here may provide a helpful complement to current antibody-based protocols for the therapy and prevention of HIV-1 infection.IMPORTANCE Monoclonal antibodies represent one of the most important recent innovations in the fight against infectious diseases. Although potent antibodies can be cloned from infected individuals, various strategies can be employed to improve their activity or pharmacological features. Here, we improved a lineage of very potent antibodies that target the receptor-binding site of HIV-1 by engineering chimeric molecules containing a fragment from a different monoclonal antibody. These engineered antibodies are promising candidates for development of therapeutic or preventive approaches against HIV/AIDS.


Assuntos
Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Engenharia de Proteínas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Sítios de Ligação , Sítios de Ligação de Anticorpos/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/uso terapêutico , Antígenos CD4/química , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/uso terapêutico , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química
18.
Arch Biochem Biophys ; 727: 109329, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35738425

RESUMO

Cadherins are a family of cell surface glycoproteins that mediate Ca2+-dependent cell to cell adhesion. They organize to form large macromolecular assemblies at the junctions of cells in order to form and maintain the integrity of tissue structures, thereby playing an indispensable role in the multicellular organization. Notably, a large body of research on E- and N-cadherin, the two most widely studied members of the cadherin superfamily, suggest for homophilic associations among them to drive cell adhesion. Interestingly, latest studies also highlight for direct crosstalk among these two classical cadherins to form heterotypic connections in physiological as well as in disease environment. However, the molecular details for the heterophilic association of E-cadherin and N-cadherin has not been investigated yet, which we aimed to address in this work. Using surface plasmon resonance and flow cytometry based biophysical studies we observed heterophilic interaction between E- and N-cadherin mediated through the membrane distal ectodomains. Further, the heterodimeric interface of E-cadherin and N-cadherin was mapped using structure-guided mutational studies followed by complementary biophysical analyses to identify the important interface residues involved in the interaction. The results obtained imply significant resemblance in the interface residues of E-cadherin that are crucial for homophilic recognition of E-cadherin and heterophilic recognition of N-cadherin as well.


Assuntos
Caderinas , Caderinas/metabolismo , Adesão Celular/fisiologia , Dimerização , Mutação , Ligação Proteica
19.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362127

RESUMO

Oligomerization endows proteins with some key properties such as extra-stabilization, long-range allosteric regulation(s), and partnerships not accessible to their monomeric counterparts. How oligomerization is achieved and preserved during evolution is a subject of remarkable scientific relevance. By exploiting the abilities of the machine-learning algorithms implemented in AlphaFold (AF) in predicting protein structures, herein, we report a comprehensive analysis of the structural states of functional oligomers of all members of the KCTD protein family. Interestingly, our approach led to the identification of reliable three-dimensional models for the pentameric states of KCNRG, KCTD6, KCTD4, KCTD7, KCTD9, and KCTD14 and possibly for KCTD11 and KCTD21 that are involved in key biological processes and that were previously uncharacterized from a structural point of view. Although for most of these proteins, the CTD domains lack any sequence similarity, they share some important structural features, such as a propeller-like structure with a central cavity delimited by five exposed and regular ß-strands. Moreover, the structure of the related proteins KCTD7 and KCTD14, although pentameric, appears to be characterized by a different organization of the CTD region, with the five chains forming a circle-like structure with a large cavity. Our predictions also suggest that other members of the family, such as KCTD10, KCTD13, and TNFAIP1, present a strong propensity to assume dimeric states. Although the structures of the functional oligomers reported herein represent models that require additional validations, they provide a consistent and global view of KCTD protein oligomerization.


Assuntos
Canais de Potássio , Proteínas , Ligação Proteica , Canais de Potássio/metabolismo , Proteínas/metabolismo
20.
Molecules ; 27(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897902

RESUMO

The Pseudoalteromonas luteoviolacea strain CPMOR-1 expresses a flavin adenine dinucleotide (FAD)-dependent L-amino acid oxidase (LAAO) with broad substrate specificity. Steady-state kinetic analysis of its reactivity towards the 20 proteinogenic amino acids showed some activity to all except proline. The relative specific activity for amino acid substrates was not correlated only with Km or kcat values, since the two parameters often varied independently of each other. Variation in Km was attributed to the differential binding affinity. Variation in kcat was attributed to differential positioning of the bound substrate relative to FAD that decreased the reaction rate. A structural model of this LAAO was compared with structures of other FAD-dependent LAAOs that have different substrate specificities: an LAAO from snake venom that prefers aromatic amino acid substrates and a fungal LAAO that is specific for lysine. While the amino acid sequences of these LAAOs are not very similar, their overall structures are comparable. The differential activity towards specific amino acids was correlated with specific residues in the active sites of these LAAOs. Residues in the active site that interact with the amino and carboxyl groups attached to the α-carbon of the substrate amino acid are conserved in all of the LAAOs. Residues that interact with the side chains of the amino acid substrates show variation. This provides insight into the structural determinants of the LAAOs that dictate their different substrate preferences. These results are of interest for harnessing these enzymes for possible applications in biotechnology, such as deracemization.


Assuntos
Flavina-Adenina Dinucleotídeo , L-Aminoácido Oxidase , Aminoácidos , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , L-Aminoácido Oxidase/química , Pseudoalteromonas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA