Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(7): e111961, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574362

RESUMO

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismo
2.
Cancer Sci ; 114(3): 885-895, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36404139

RESUMO

The cellular origins of cervical cancer and the histological differentiation of human papillomavirus (HPV)-infected cells remain unexplained. To gain new insights into the carcinogenesis and histological differentiation of HPV-associated cervical cancer, we focused on cervical cancer with mixed histological types. We conducted genomic and transcriptomic analyses of cervical cancers with mixed histological types. The commonality of the cellular origins of these cancers was inferred using phylogenetic analysis and by assessing the HPV integration sites. Carcinogenesis was estimated by analyzing human gene expression profiles in different histological types. Among 42 cervical cancers with known HPV types, mixed histological types were detected in four cases, and three of them were HPV18-positive. Phylogenetic analysis of these three cases revealed that the different histological types had a common cell of origin. Moreover, the HPV-derived transcriptome and HPV integration sites were common among different histological types, suggesting that HPV integration could occur before differentiation into each histological type. Human gene expression profiles indicated that HPV18-positive cancer retained immunologically cold components with stem cell properties. Mixed cervical cancer has a common cellular origin among different histological types, and progenitor cells with stem-like properties may be associated with the development of HPV18-positive cervical cancer.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Papillomavirus Humano 18/genética , Filogenia , Papillomaviridae/genética , DNA Viral/genética
3.
Hepatol Res ; 53(7): 649-660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929310

RESUMO

AIM: Developing effective adjuvant therapies is essential for improving the surgical outcomes in patients with hepatocellular carcinoma (HCC). Immunotherapy against HCC has become a promising strategy; however, only approximately 30% of all HCC patients respond to immunotherapy. Previously, we generated the novel therapeutic vaccine comprising multi-human leukocyte antigen-binding heat shock protein 70/glypican-3 peptides with a novel adjuvant combination of hLAG-3Ig and poly-ICLC. We also confirmed the safety of this vaccination therapy, as well as its capacity for the effective induction of immune responses in a previous clinical trial. METHODS: In this phase I study, we administered this vaccine intradermally six times before surgery, and 10 times after surgery to patients with untreated, surgically resectable HCC (stage II to IVa). The primary end-points of this study were the safety and feasibility of this treatment. We also analyzed the resected tumor specimens pathologically using hematoxylin-eosin staining and immunohistochemistry for heat shock protein 70, glypican 3, CD8 and programmed death-1. RESULTS: A total of 20 human leukocyte antigen-matched patients received this vaccination therapy with an acceptable side-effect profile. All patients underwent planned surgery without vaccination-related delay. Immunohistochemical analyses revealed that potent infiltration of CD8+ T cells into tumors with target antigen expression was observed in 12 of 20 (60%) patients. CONCLUSIONS: This novel therapeutic vaccine was safe as perioperative immunotherapy for patients with HCC, and has the potential to strongly induce CD8+ T cells infiltration into tumors.

4.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108368

RESUMO

Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.


Assuntos
Regulação da Expressão Gênica , Melanoma Experimental , Humanos , Animais , Camundongos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Apresentação de Antígeno , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Cancer Sci ; 113(3): 891-903, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34967077

RESUMO

Aging has been demonstrated to play vital roles in the prognosis and treatment efficacy of cancers, including lung adenocarcinoma (LUAD). This novel study aimed to construct an aging-related risk signature to evaluate the prognosis and immunogenicity of LUAD. Transcriptomic profiles and clinical information were collected from a total of 2518 LUAD patients from 12 independent cohorts. The risk signature was developed by combining specific gene expression with the corresponding regression coefficients. One cohort treated with the immune checkpoint inhibitor (ICI) was also used. Subsequently, a risk signature was developed based on 21 aging-related genes. LUAD patients with low-risk scores exhibited improved survival outcomes in both the discovery and validation cohorts. Further immunology analysis revealed elevated lymphocyte infiltration, decreased infiltration of immune-suppressive cells, immune response-related pathways, and favorable ICI predictor enrichment in the low-risk subgroup. Genomic mutation exploration indicated the enhanced mutation burden and higher mutation rates in significantly driver genes of TP53, KEAP1, SMARCA4, and RBM10 were enriched in patients with a low-risk signature. In the immunotherapeutic cohort, it was observed that low-risk aging scores were markedly associated with prolonged ICI prognosis. Overall, the estimated aging signature proved capable of evaluating the prognosis, tumor microenvironment, and immunogenicity, which further provided clues for tailoring prognosis prediction and immunotherapy strategies, apart from promoting individualized treatment plans for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Envelhecimento/genética , Neoplasias Pulmonares/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Biomarcadores Tumorais/genética , Estudos de Coortes , Humanos , Proteínas de Checkpoint Imunológico/genética , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/imunologia , Mutação , Prognóstico , Fatores de Risco , Transcriptoma , Microambiente Tumoral/imunologia
6.
Cancer Immunol Immunother ; 71(4): 807-818, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34415404

RESUMO

Histiocytic sarcoma (HS) is a rare and aggressive tumor in humans with no universally agreed standard of care therapy. Spontaneous canine HS exhibits increased prevalence in specific breeds, shares key genetic and biologic similarities with the human disease, and occurs in an immunocompetent setting. Previous data allude to the immunogenicity of this disease in both species, highlighting the potential for their successful treatment with immunotherapy. Quantification of CD3 tumor-infiltrating lymphocytes (TIL) in five cases of human HS revealed variable intra-tumoral T cell infiltration. Due to the paucity of human cases and lack of current model systems in which to appraise associations between anti-tumor immunity and treatment-outcome in HS, we analyzed clinical data and quantified TIL in 18 dogs that were previously diagnosed with localized HS and treated with curative-intent tumor resection with or without adjuvant chemotherapy. As in humans, assessment of TIL in biopsy tissues taken at diagnosis reveal a spectrum of immunologically "cold" to "hot" tumors. Importantly, we show that increased CD3 and granzyme B TIL are positively associated with favorable outcomes in dogs following surgical resection. NanoString transcriptional analyses revealed increased T cell and antigen presentation transcripts associated with prolonged survival in canine pulmonary HS and a decreased tumor immunogenicity profile associated with shorter survivals in splenic HS. Based on these findings, we propose that spontaneous canine HS is an accessible and powerful novel model to study tumor immunology and will provide a unique platform to preclinically appraise the efficacy and tolerability of anti-cancer immunotherapies for HS.


Assuntos
Doenças do Cão , Sarcoma Histiocítico , Animais , Biópsia , Cães , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/patologia , Sarcoma Histiocítico/veterinária , Linfócitos do Interstício Tumoral/patologia , Baço/patologia
7.
Bioessays ; 42(10): e2000024, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767371

RESUMO

The question as to why some hosts can eradicate their tumors while others succumb to tumor-progression remains unanswered. Here, a provocative concept is proposed that intrinsic differences in the T cell receptor (TCR) repertoire of individuals may influence the outcome of anti-tumor immunity by affecting the frequency and/or variety of tumor-reactive CD8 and/or CD4 tumor-infiltrating lymphocytes. This idea implicates that the TCR repertoire in a given patient might not provide sufficiently different TCR clones that can recognize tumor antigens, namely, "a hole in the TCR repertoire" might exist. This idea may provide a novel perspective to further dissect the mechanisms underlying heterogeneous anti-tumor immune responses in different hosts. Besides tumor-intrinsic heterogeneity and host microbiome, the various factors that may constantly shape the dynamic TCR repertoire are also discussed. Elucidating mechanistic differences in different individuals' immune systems will allow to better harness immune system to design new personalized cancer immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos , Humanos , Imunidade , Linfócitos do Interstício Tumoral , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
8.
Chin J Cancer Res ; 34(1): 1-10, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35355932

RESUMO

Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors. However, most patients cannot benefit from such therapies, mainly due to the intrinsic low immunogenicity of cancer cells (CCs) that allows them to escape recognition by immune cells of the body. Immunogenic cell death (ICD), which is a form of regulated cell death, engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment (TME), ultimately evoking the damage-associated molecular pattern (DAMP) signals to activate tumor-specific immunity. The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity. At the same time, they reprogram TME with a "cold-warm-hot" immune status, ultimately amplifying and sustaining dendritic cell- and T cell-dependent innate sensing as well as the antitumor immune responses. In this review, we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions. Additionally, we highlight how this dynamic interaction contributes to priming tumor immunogenicity, thereby boosting anticancer immune responses. We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.

9.
Cancer Immunol Immunother ; 70(6): 1605-1617, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33230567

RESUMO

Tumor immunogenicity is driven by various genomic and transcriptomic factors but the association with the overall status of methylation aberrancy is not well established. We analyzed The Cancer Genome Atlas pan-cancer database to investigate whether the overall methylation aberrancy links to the immune evasion of tumor. We created the definitions of hypermethylation burden, hypomethylation burden and methylation burden to establish the values that represent the degree of methylation aberrancy from human methylation 450 K array data. Both hypermethylation burden and hypomethylation burden significantly correlated with global methylation level as well as methylation subtypes defined in previous literatures. Then we evaluated whether methylation burden correlates with tumor immunogenicity and found that methylation burden showed a significant negative correlation with cytolytic activity score, which represent cytotoxic T cell activity, in pan-cancer (Spearman rho = - 0.37, p < 0.001) and 30 of 33 individual cancer types. Furthermore, this correlation was independent of mutation burden and chromosomal instability in multivariate regression analysis. We validated the findings in the external cohorts and outcomes of patients who were treated with immune checkpoint inhibitors, which showed that high methylation burden group had significantly poor progression-free survival (Hazard ratio 1.74, p = 0.038). Overall, the degree of methylation aberrancy negatively correlated with tumor immunogenicity. These findings emphasize the importance of methylation aberrancy for tumors to evade immune surveillance and warrant further development of methylation biomarker.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/patologia , Regiões Promotoras Genéticas , Ilhas de CpG , Epigênese Genética , Humanos , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Taxa de Sobrevida , Transcriptoma
10.
Future Oncol ; 16(29): 2295-2306, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32639175

RESUMO

Aim: To verify the relationship between ARID1A and tumor immune microenvironment thus immune checkpoint inhibitors (ICIs) response. Material & methods: Several public databases were used to characterize the association between ARID1A gene alteration and tumor immunity. Results: The gene mutation frequency was 8.2% in all cancer types. The ARID1A-mutated cancers have higher scores of mutation count, tumor mutational burden, neoantigen load (p < 0.001) and T cell repertoire, B cell repertoire diversity (p < 0.05). The gene mutation has tight association with multiple-activated immune cells. Survival analysis suggested that patients with ARID1A mutant cancers benefit more from ICIs treatment (p = 0.013). Conclusion: The ARID1A gene mutation was correlated with higher tumor immunogenicity and activated antitumor immune microenvironment, resulting in superior cohort that respond well to ICIs.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação a DNA/genética , Mutação , Neoplasias/etiologia , Neoplasias/patologia , Fatores de Transcrição/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Alelos , Bases de Dados Genéticas , Gerenciamento Clínico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Terapia de Alvo Molecular , Neoplasias/mortalidade , Neoplasias/terapia , Prognóstico , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283429

RESUMO

Interferon-γ (IFN-γ) is a pleiotropic cytokine that has long been praised as an important effector molecule of anti-tumor immunity, capable of suppressing tumor growth through various mechanisms. On the contrary to such a bright side of IFN-γ, it has also been involved in promoting an outgrowth of tumor cells with immunoevasive phenotype suggesting an existence of a dark "tumor-promoting" side effect of IFN-γ. In this review, we will summarize this multi-functional role of IFN-γ in tumor context, how it promotes changes in tumor phenotype towards increased fitness for growth in immunocompetent host. Furthermore, we summarize how IFN-γ is involved in homeostatic or cancer-triggered mechanisms to establish an immunosuppressive tumor microenvironment.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Interferon gama/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Evasão Tumoral , Animais , Carcinogênese/imunologia , Carcinogênese/patologia , Modelos Animais de Doenças , Humanos , Imunomodulação/genética , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Microambiente Tumoral
14.
Int J Mol Sci ; 18(9)2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885584

RESUMO

Tumor-infiltrating lymphocytes (TILs) in breast cancer are a key representative of the tumor immune microenvironment and have been shown to provide prognostic and predictive biomarkers. The extent of lymphocytic infiltration in tumor tissues can be assessed by evaluating hematoxylin and eosin (H&E)-stained tumor sections. We investigated tissue microarrays of 31 invasive breast cancer patients, looking at quantity and topological distribution of CD3+, CD8+, CD20+, Ki67+, FoxP3+ TILs and CD3+/FoxP3+, CD8+/FoxP3+ cell ratios. We separately evaluated TILs at the invasive edge and at the center of the tumor, to find any clinical implications of tumor heterogeneity. No statistically significant difference was found in quantity and distribution of both TIL subsets and TIL ratios, by comparing patients who suffered from a local or distant recurrence of the tumor (relapse group: 13 patients) with patients not showing cancer relapse (non-relapse group: 18 patients). In the whole sample, we observed three main statistically significant positive correlations: (1) between CD3+ and CD8+ T-cells; (2) between FoxP3+ and Ki67+ lymphocyte infiltration; (3) between CD3+/FoxP3+ cell ratio (C3FR) and CD8+/FoxP3+ cell ratio (C8FR). Tumor heterogeneity and stronger positive TIL associations were found in the non-relapse group, where both CD3-CD8 and FoxP3-Ki67 inter-correlations were found to be significant at the center of the tumor, while the correlation between C3FR and C8FR was significant at the invasive edge. No correlations between TIL subsets were detected in the relapse group. Our findings suggest the existence of stronger inter-subtype lymphocytic networks in invasive breast cancer not showing recurrence. Further evaluations of clinical and topological correlations between and within TIL subsets are needed, in addition to the assessment of TIL quantification and distribution, in order to follow up on whether morphological evaluation of TILs might reveal the underlying lymphocytic functional connectivity and help relapse prediction.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Comunicação Celular/imunologia , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral/imunologia , Biomarcadores , Neoplasias da Mama/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Invasividade Neoplásica , Recidiva Local de Neoplasia , Prognóstico , Estudos Retrospectivos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(50): 20212-7, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277834

RESUMO

An autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8(+) T cells, the mice, like human patients with PDA, did not respond to two immunological checkpoint antagonists that promote the function of T cells: anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (α-PD-L1). Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). The depletion of the FAP(+) stromal cell also uncovered the antitumor effects of α-CTLA-4 and α-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T-cell checkpoint antagonists. Three findings suggested that chemokine (C-X-C motif) ligand 12 (CXCL12) explained the overriding immunosuppression by the FAP(+) cell: T cells were absent from regions of the tumor containing cancer cells, cancer cells were coated with the chemokine, CXCL12, and the FAP(+) CAF was the principal source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor chemokine (C-X-C motif) receptor 4 inhibitor, induced rapid T-cell accumulation among cancer cells and acted synergistically with α-PD-L1 to greatly diminish cancer cells, which were identified by their loss of heterozygosity of Trp53 gene. The residual tumor was composed only of premalignant epithelial cells and inflammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP(+) CAF, may direct tumor immune evasion in a model of human PDA.


Assuntos
Carcinoma Ductal Pancreático/terapia , Quimiocina CXCL12/metabolismo , Gelatinases/metabolismo , Imunoterapia/métodos , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/terapia , Serina Endopeptidases/metabolismo , Evasão Tumoral/genética , Análise de Variância , Animais , Sequência de Bases , Benzilaminas , Carcinoma Ductal Pancreático/imunologia , Ciclamos , Endopeptidases , ELISPOT , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Compostos Heterocíclicos , Imuno-Histoquímica , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas/imunologia , Análise de Sequência de RNA
16.
Int J Mol Sci ; 17(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367680

RESUMO

Although most cancer types have been viewed as immunologically silent until recently, it has become increasingly clear that the immune system plays key roles in the course of tumor development. Remarkable progress towards understanding cancer immunogenicity and tumor-immune system interactions has revealed important implications for the design of novel immune-based therapies. Natural immune responses, but also therapeutic interventions, can modulate the tumor phenotype due to selective outgrowth of resistant subtypes. This is the result of heterogeneity of tumors, with genetic instability as a driving force, and obviously changes the immunogenicity of tumors. In this review, we discuss the immunogenicity of colorectal cancer (CRC) in relation to tumor development and treatment. As most tumors, CRC activates the immune system in various ways, and is also capable of escaping recognition and elimination by the immune system. Tumor-immune system interactions underlie the balance between immune control and immune escape, and may differ in primary tumors, in the circulation, and in liver metastases of CRC. Since CRC immunogenicity varies between tumors and individuals, novel immune-based therapeutic strategies should not only anticipate the molecular profile, but also the immunological profile of a specific tumor.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Animais , Neoplasias Colorretais/complicações , Humanos , Sistema Imunitário/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia
17.
Immunotargets Ther ; 13: 183-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558927

RESUMO

Natural killer (NK)-cells are innate immune cells with potent anti-tumor capacity, capable of recognizing target cells without prior exposure. For this reason, NK-cells are recognized as a useful source of cell therapy. Although most NK-cells are derived from the bone marrow (BM), a separate developmental pathway in the thymus also exists, producing so-called thymic NK-cells. Unlike conventional NK-cells, thymic NK (tNK)-cells have a combined capacity for cytokine production and a natural ability to kill tumor cells in the presence of NK-cell receptor stimulatory ligands. Furthermore, tNK-cells are reported to express CD3 subunits intracellularly, without the presence of a rearranged T-cell receptor (TCR). This unique feature may enable harnessing of these cells with a TCR to combine NK- and T-cell effector properties in one cell type. The development, phenotype, and function of tNK-cells, and potential as a cell therapy is, however, poorly explored. In this review, we provide an overview of current literature on both murine and human tNK-cells in comparison to conventional BM-derived NK-cells, and discuss the potential applications of this cellular subset in the context of cancer immunotherapy.

18.
Biomaterials ; 305: 122444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142471

RESUMO

Immunogenicity improvement is a valuable strategy for tumor immunotherapy. However, immunosuppressive factors bestow tolerogenic phenotype on tumor-infiltrating DCs, which exhibit weak antigen presentation and strong anti-inflammatory cytokines secretion abilities, limiting the effectiveness of tumor immunotherapy even if the tumor has adequate immunogenicity. Herein, we designed a programmable releasing versatile hydrogel platform (PIVOT) to sculpt tumor immunogenicity, increase intratumoral DCs and cDC1s abundance, and reverse the tolerogenic phenotype of DCs, thus promoting their maturation for boosting innate and adaptive immune responses. Responsive to tumoral reactive oxygen species (ROS), the hydrogel splits and promotes the activation of DCs and macrophages. Then, oxaliplatin is first released from PIVOT to sculpt tumor immunogenicity by inducing immunogenic cell death (ICD) and causing tumoral DNA fragments exposure simultaneously. Subsequently, the impaired DNA fragments bind to high mobility group protein 1 (HMGB1) forming the DNA-HMGB1 complex. Moreover, exogenous FMS-like tyrosine kinase 3 ligand (Flt-3L) recruits masses of DCs, especially cDC1s, which will endocytose the complex benefiting from TIM-3 blockade (αTIM3) that can reverse tolerogenic DCs. Finally, the endocytosis activates the cGAS-STING pathway of cDC1s, which promotes the secretion of type I IFN that triggers innate immune responses, and CXCL9 which recruits CD8+ effector T cells to initiate the following adaptive immune response against tumor progress. PIVOT achieves nearly 90 % tumor growth inhibition and induces systemic antitumor immune responses. In conclusion, this study focuses on ICD-mediated tumor immunogenicity sculpture and nucleic acid endocytosis-involved tolerogenic DCs reversal, providing a novel paradigm for enhancing DCs-based antitumor immune responses.


Assuntos
Proteína HMGB1 , Neoplasias , Humanos , Proteína HMGB1/metabolismo , Células Dendríticas , Hidrogéis/metabolismo , Antígenos de Neoplasias , Neoplasias/patologia , Apresentação de Antígeno , DNA/metabolismo
19.
Front Immunol ; 15: 1354297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444857

RESUMO

Background: To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods: MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results: Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion: Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.


Assuntos
Microbioma Gastrointestinal , Mel , Neoplasias , Animais , Camundongos , RNA Ribossômico 16S/genética , Administração Oral , Microambiente Tumoral
20.
Front Immunol ; 15: 1362224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415248

RESUMO

Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity.


Assuntos
Neoplasias , Proteínas Supressoras da Sinalização de Citocina , Humanos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA