RESUMO
Malaria is a prominent vector-borne illness caused by Plasmodium parasites. Therapeutic intervention remains a critical component for disease eradication efforts but is complicated by the emergence of drug resistance. This SnapShot summarizes the human-relevant stages of the P. falciparum life cycle and describes how licensed antimalarials, clinical candidates, and newly emerging compounds target each stage to prevent, treat, or block transmission of malaria. To view this SnapShot, open or download the PDF.
Assuntos
Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Erradicação de Doenças , Resistência a Medicamentos , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacosRESUMO
Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.
Assuntos
Proteínas de Transporte de Monossacarídeos/ultraestrutura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Animais , Antimaláricos , Transporte Biológico , Glucose/metabolismo , Humanos , Malária , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Parasitos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Açúcares/metabolismoRESUMO
The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica , Malária/imunologia , Plasmodium/imunologia , Transcriptoma , Transferência Adotiva , Animais , Antimaláricos/farmacologia , Biomarcadores , Cromatina/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Malária/parasitologia , Malária/terapia , Camundongos , Plasmodium/efeitos dos fármacosRESUMO
Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here, we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the germinal center reaction, limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current model describing the role and function of blood-stage Plasmodium-induced plasmablasts but they also reveal new targets and strategies to improve anti-Plasmodium humoral immunity.
Assuntos
Imunidade Humoral , Malária/imunologia , Plasmócitos/metabolismo , Plasmodium falciparum/imunologia , Adolescente , Adulto , Aminoácidos/administração & dosagem , Aminoácidos/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/metabolismo , Antimaláricos/administração & dosagem , DNA de Protozoário/isolamento & purificação , Modelos Animais de Doenças , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária/sangue , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Nutrientes/metabolismo , Plasmócitos/imunologia , Plasmócitos/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Estudo de Prova de Conceito , Adulto JovemRESUMO
Malaria has been a major global health problem of humans through history and is a leading cause of death and disease across many tropical and subtropical countries. Over the last fifteen years renewed efforts at control have reduced the prevalence of malaria by over half, raising the prospect that elimination and perhaps eradication may be a long-term possibility. Achievement of this goal requires the development of new tools including novel antimalarial drugs and more efficacious vaccines as well as an increased understanding of the disease and biology of the parasite. This has catalyzed a major effort resulting in development and regulatory approval of the first vaccine against malaria (RTS,S/AS01) as well as identification of novel drug targets and antimalarial compounds, some of which are in human clinical trials.
Assuntos
Interações Hospedeiro-Parasita , Malária Falciparum , Plasmodium falciparum/crescimento & desenvolvimento , Imunidade Adaptativa , Animais , Antimaláricos/uso terapêutico , Controle de Doenças Transmissíveis/métodos , Culicidae/parasitologia , Erradicação de Doenças/métodos , Resistência a Medicamentos , Eritrócitos/parasitologia , Saúde Global , Interações Hospedeiro-Parasita/imunologia , Humanos , Estágios do Ciclo de Vida , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Merozoítos/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Esporozoítos/crescimento & desenvolvimento , Vacinas Sintéticas/imunologiaRESUMO
In this issue of Immunity, Wang et al. report isolation of a human antibody derived from volunteers immunized during a malaria vaccine trial. This antibody binds a novel epitope and proves potent at preventing mosquito transmission of the malaria parasite.
Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária , Animais , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Humanos , Fígado , Malária/prevenção & controle , EsporozoítosRESUMO
Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Fígado/imunologia , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto JovemRESUMO
A central problem in biology is to identify gene function. One approach is to infer function in large supergenomic networks of interactions and ancestral relationships among genes; however, their analysis can be computationally prohibitive. We show here that these biological networks are compressible. They can be shrunk dramatically by eliminating redundant evolutionary relationships, and this process is efficient because in these networks the number of compressible elements rises linearly rather than exponentially as in other complex networks. Compression enables global network analysis to computationally harness hundreds of interconnected genomes and to produce functional predictions. As a demonstration, we show that the essential, but functionally uncharacterized Plasmodium falciparum antigen EXP1 is a membrane glutathione S-transferase. EXP1 efficiently degrades cytotoxic hematin, is potently inhibited by artesunate, and is associated with artesunate metabolism and susceptibility in drug-pressured malaria parasites. These data implicate EXP1 in the mode of action of a frontline antimalarial drug.
Assuntos
Antígenos de Protozoários/isolamento & purificação , Compressão de Dados , Genômica/métodos , Plasmodium falciparum/enzimologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Domínio Catalítico , Hemina/metabolismo , Modelos Genéticos , Plasmodium falciparum/genéticaRESUMO
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Assuntos
Aminoacil-tRNA Sintetases , Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Plasmodium falciparum/genética , Malária/tratamento farmacológico , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/uso terapêuticoRESUMO
First isolated in China in early 2020, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for the ongoing pandemic of Coronavirus Disease 2019 (COVID-19). The disease has been spreading rapidly across the globe, with the largest burden falling on China, Europe, and the United States. COVID-19 is a new clinical syndrome, characterized by respiratory symptoms with varying degrees of severity, from mild upper respiratory illness to severe interstitial pneumonia and acute respiratory distress syndrome, aggravated by thrombosis in the pulmonary microcirculation. Three main phases of disease progression have been proposed for COVID-19: an early infection phase, a pulmonary phase, and a hyperinflammation phase. Although current understanding of COVID-19 treatment is mainly derived from small uncontrolled trials that are affected by a number of biases, strong background noise, and a litany of confounding factors, emerging awareness suggests that drugs currently used to treat COVID-19 (antiviral drugs, antimalarial drugs, immunomodulators, anticoagulants, and antibodies) should be evaluated in relation to the pathophysiology of disease progression. Drawing upon the dramatic experiences taking place in Italy and around the world, here we review the changes in the evolution of the disease and focus on current treatment uncertainties and promising new therapies.
Assuntos
Betacoronavirus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Antimaláricos/uso terapêutico , Antivirais/uso terapêutico , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Saúde Global , Humanos , Fatores Imunológicos/uso terapêutico , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2RESUMO
Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.
Assuntos
Malária/parasitologia , Metagenômica/tendências , Mosquitos Vetores/genética , Plasmodium falciparum/genética , Animais , Anopheles/genética , Antimaláricos/farmacologia , Resistência a Medicamentos , Genes de Insetos , Genes de Protozoários , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas , Plasmodium falciparum/efeitos dos fármacosRESUMO
The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.
Assuntos
Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina Tiolesterase , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Antimaláricos/química , Ubiquitina/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológicoRESUMO
BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).
Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Humanos , Amodiaquina/administração & dosagem , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Eritreia/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , PrevalênciaRESUMO
The emergence of resistance against antimalarials and insecticides poses a significant threat to malaria elimination strategies. It is crucial to explore potential risk factors for malaria to identify new targets and alternative therapies. Malnutrition is a well-established risk factor for malaria. Deficiencies of micronutrients such as vitamin A, zinc, iron, folic acid, and phenotypic measures of malnutrition, such as stunting and wasting, have been studied extensively in the context of malaria. Vitamin B2, also known as riboflavin, is a micronutrient involved in maintaining cellular homeostasis. Riboflavin deficiency has been shown to have an inverse correlation with malarial parasitaemia. This article reviews the role of riboflavin in maintaining redox homeostasis and probes how riboflavin deficiency could alter malaria pathogenesis by disrupting the balance between oxidants and antioxidants. Though riboflavin analogues have been explored as antimalarials, new in vivo and patient-based research is required to target riboflavin-associated pathways for antimalarial therapy.
Assuntos
Antimaláricos , Malária , Deficiência de Riboflavina , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Ácido Fólico , Micronutrientes , RiboflavinaRESUMO
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Assuntos
Antimaláricos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Guiana , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/tratamento farmacológico , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Proteínas de Protozoários/genéticaRESUMO
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Assuntos
Antimaláricos , Malária , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Células Endoteliais/metabolismo , Microtomografia por Raio-X/efeitos adversos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Malária/parasitologia , Análise de Sequência de RNA , Plasmodium bergheiRESUMO
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/genética , Eritrócitos/parasitologia , Antimaláricos/farmacologiaRESUMO
This year's Lasker DeBakey Clinical Research Award goes to Youyou Tu for the discovery of artemisinin and its use in the treatment of malaria--a medical advance that has saved millions of lives across the globe, especially in the developing world.
Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Artemisininas/isolamento & purificação , Artemisininas/uso terapêutico , Distinções e Prêmios , Malária Falciparum/tratamento farmacológico , Medicina Tradicional Chinesa/história , China , Resistência a Medicamentos , Saúde Global , História do Século XX , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacosRESUMO
To ensure their survival in the human bloodstream, malaria parasites degrade up to 80% of the host erythrocyte hemoglobin in an acidified digestive vacuole. Here, we combine conditional reverse genetics and quantitative imaging approaches to demonstrate that the human malaria pathogen Plasmodium falciparum employs a heteromultimeric V-ATPase complex to acidify the digestive vacuole matrix, which is essential for intravacuolar hemoglobin release, heme detoxification, and parasite survival. We reveal an additional function of the membrane-embedded V-ATPase subunits in regulating morphogenesis of the digestive vacuole independent of proton translocation. We further show that intravacuolar accumulation of antimalarial chemotherapeutics is surprisingly resilient to severe deacidification of the vacuole and that modulation of V-ATPase activity does not affect parasite sensitivity toward these drugs.