Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2313789121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335257

RESUMO

Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.


Assuntos
Quirópteros , Filoviridae , Animais , Filogenia , China , Mamíferos
2.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
3.
PLoS Pathog ; 18(2): e1010268, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120176

RESUMO

Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.


Assuntos
Ebolavirus/genética , Infecções por Filoviridae/virologia , Filoviridae/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Teste de Complementação Genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Corpos de Inclusão/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Macrófagos/virologia , RNA Viral , Genética Reversa , Células Vero , Vírion/genética
4.
J Infect Dis ; 228(Suppl 6): S446-S459, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849404

RESUMO

Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Surtos de Doenças
5.
J Infect Dis ; 228(Suppl 7): S474-S478, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37596837

RESUMO

Although there are now approved treatments and vaccines for Ebola virus disease, the case fatality rate remains unacceptably high even when patients are treated with the newly approved therapeutics. Furthermore, these countermeasures are not expected to be effective against disease caused by other filoviruses. A meeting of subject-matter experts was held during the 10th International Filovirus Symposium to discuss strategies to address these gaps. Several investigational therapeutics, vaccine candidates, and combination strategies were presented. The greatest challenge was identified to be the implementation of well-designed clinical trials of safety and efficacy during filovirus disease outbreaks. Preparing for this will require agreed-upon common protocols for trials intended to bridge multiple outbreaks across all at-risk countries. A multinational research consortium including at-risk countries would be an ideal mechanism to negotiate agreement on protocol design and coordinate preparation. Discussion participants recommended a follow-up meeting be held in Africa to establish such a consortium.


Assuntos
Ebolavirus , Infecções por Filoviridae , Filoviridae , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Surtos de Doenças/prevenção & controle , África
6.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537381

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Assuntos
Ebolavirus , Filoviridae , Marburgvirus , Vírus
7.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724296

RESUMO

AIMS: Filoviruses encompass highly pathogenic viruses placing significant public health burden on countries affected. Efforts for improved diagnostics and surveillance are needed. The requirement for high-containment can be circumvented by using pseudotype viruses (PV), which can be handled safely, in tropism, drug screening, vaccine evaluation, and serosurveillance studies. We assessed the stability and functionality after long-term storage of lyophilised filovirus pseudotypes for use in neutralisation assays. METHODS AND RESULTS: We generated a panel of filovirus lentiviral pseudotypes followed by lyophilisation and storage in different conditions. Next, we reconstituted and tested PVs in infection experiments and pseudotype neutralisation assays where possible. Lyophilised Ebola and Marburg PVs retained production titres for at least two years when stored at +4˚C or less. Lyophilised Ebola PVs performed similarly to non-lyophilised PVs in neutralisation assays after reconstitution. When stored at high temperatures (+37˚C), lyophilised PVs did not retain titres after 1-month storage, however, when lyophilised using pilot-scale facilities EBOV PVs retained titres and performed as standard in neutralisation assays after on 1-month storage at 37˚C. CONCLUSIONS: Filovirus PVs are amenable to lyophilisation and can be stored for at least 2 years in a household fridge to be used in antibody assays. Lyophilisation performed in the right conditions would allow transportation at room temperature, even in warmer climates.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Vírus , Humanos , Testes de Neutralização/métodos , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais
8.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184176

RESUMO

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Filoviridae/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Linhagem Celular , Genes Supressores , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
9.
PLoS Pathog ; 16(1): e1008231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905227

RESUMO

Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.


Assuntos
Filoviridae/fisiologia , Marburgvirus/fisiologia , Mimetismo Molecular , Proteínas Proto-Oncogênicas c-yes/metabolismo , Proteínas da Matriz Viral/fisiologia , Liberação de Vírus , Angiomotinas , Sítios de Ligação , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Domínios PDZ , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo
10.
Emerg Infect Dis ; 27(12): 3082-3091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808081

RESUMO

European perch (Perca fluviatilis) are increasingly farmed as a human food source. Viral infections of European perch remain largely unexplored, thereby putting farm populations at incalculable risk for devastating fish epizootics and presenting a potential hazard to consumers. To address these concerns, we applied metatranscriptomics to identify disease-associated viruses in European perch farmed in Switzerland. Unexpectedly, in clinically diseased fish we detected novel freshwater fish filoviruses, a novel freshwater fish hantavirus, and a previously unknown rhabdovirus. Hantavirus titers were high, and we demonstrated virus in macrophages and gill endothelial cells by using in situ hybridization. Rhabdovirus titers in organ samples were low, but virus could be isolated on cell culture. Our data add to the hypothesis that filoviruses, hantaviruses, and rhabdoviruses are globally distributed common fish commensals, pathogens, or both. Our findings shed new light on negative-sense RNA virus diversity and evolution.


Assuntos
Filoviridae , Doenças dos Peixes , Orthohantavírus , Rhabdoviridae , Animais , Células Endoteliais , Doenças dos Peixes/epidemiologia , Água Doce , Humanos , Filogenia , Rhabdoviridae/genética , Suíça/epidemiologia
11.
RNA ; 25(3): 279-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30587495

RESUMO

A primary property of paramyxovirus bipartite promoters is to ensure that their RNA genomes are imprinted with a hexamer phase via their association with nucleoproteins, in part because this phase as well the editing sequence itself controls mRNA editing. The question then arises whether a similar mechanism operates for filoviruses that also contain bipartite promoters that are governed by the "rule of six," even though these genomes need not, and given Ebola virus biology, cannot always be of hexamer genome length. This review suggests that this is possible and describes how it might operate, and that RNA editing may play a role in Ebola virus genome interconversion that helps the virus adapt to different host environments.


Assuntos
Filoviridae/genética , Regulação Viral da Expressão Gênica , Paramyxoviridae/genética , Regiões Promotoras Genéticas , Edição de RNA , RNA Viral , Filoviridae/fisiologia , Genoma Viral , Paramyxoviridae/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
12.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295912

RESUMO

Menglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-ß) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-ß promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-ß promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.


Assuntos
Infecções por Filoviridae/fisiopatologia , Filoviridae/genética , Animais , Quirópteros/imunologia , Quirópteros/virologia , Ebolavirus , Filoviridae/metabolismo , Filoviridae/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Marburgvirus , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição STAT1 , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
13.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941778

RESUMO

Southern China is a hot spot of emerging infectious diseases, in which diverse species of bats dwell, a large group of flying mammals considered natural reservoirs for zoonotic viruses. Recently, divergent filoviruses (FiVs) have been identified in bats within this region, which pose a potential risk to public health, but the true infection situation in bats remains largely unclear. Here, 689 archived bat serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA), Western blotting, and neutralization assay to investigate the seroprevalence and cross-reactivity of four divergent FiVs and two other viruses (rabies virus and Tuhoko pararubulavirus 1) of different families within the order Mononegavirales Results showed no cross-antigenicity between FiVs and other mononegaviruses but different cross-reactivity among the FiVs themselves. The total FiV seroreactive rate was 36.3% (250/689), with infection by the indigenous Chinese FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Further viral metagenomic analysis of fruit bat tissues also identified the gene sequence of a novel FiV. These results indicate the likely prevalence of other so far unidentified FiVs within the Chinese bat population, with frugivorous Rousettus leschenaultii and Eonycteris spelaea bats and insectivorous Myotis horsfieldii and Miniopterus schreibersii bats being their major reservoirs.IMPORTANCE Bats are natural hosts of many FiVs, from which diverse FiVs were serologically or virologically detected in Africa, Europe, and East Asia. Recently, very divergent FiVs were identified in the Chinese bat population, but their antigenic relationship with other known FiVs remains unknown. Here, we conducted serological characterization and investigation of Chinese indigenous FiVs and prototypes of other viruses in bats. Results indicated that Chinese indigenous FiVs are antigenically distant to other FiVs, and infection of novel or multiple FiVs occurred in Chinese bats, with FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Additionally, besides Rousettus leschenaultii and Eonycteris spelaea bats, the insectivorous Myotis horsfieldii and M. schreibersii bats are highly preferential hosts of FiVs. Seroreactive and viral metagenomic results indicated that more as yet unknown bat-borne FiVs circulate in Southern China, and to uncover them further, investigation and timely surveillance is needed.


Assuntos
Anticorpos Antivirais/sangue , Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae/imunologia , Animais , China , Quirópteros/sangue , Coinfecção , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Ensaio de Imunoadsorção Enzimática , Filoviridae/classificação , Metagenômica , Testes de Neutralização , Paramyxoviridae , Infecções por Paramyxoviridae/sangue , Infecções por Paramyxoviridae/veterinária , Filogenia , Rhabdoviridae , Infecções por Rhabdoviridae/sangue , Infecções por Rhabdoviridae/veterinária , Estudos Soroepidemiológicos
14.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493822

RESUMO

Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG). Using an inducible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we demonstrated that depletion of HOPS subunits as well as UVRAG impairs entry by all pathogenic filoviruses. UVRAG depletion resulted in reduced delivery of EBOV virions to NPC1+ cellular compartments. Furthermore, we show that deletion of a domain on UVRAG known to be required for interaction with the HOPS complex results in impaired EBOV entry. Taken together, our studies demonstrate that EBOV requires both expression of and coordination between the HOPS complex and UVRAG in order to mediate efficient viral entry.IMPORTANCE Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics.


Assuntos
Ebolavirus/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Ebolavirus/genética , Ebolavirus/patogenicidade , Endossomos/metabolismo , Filoviridae/genética , Infecções por Filoviridae/genética , Infecções por Filoviridae/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Virais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacos
15.
PLoS Pathog ; 15(2): e1007564, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817809

RESUMO

There are a number of vaccine candidates under development against a small number of the most common outbreak filoviruses all employing the virus glycoprotein (GP) as the vaccine immunogen. However, antibodies induced by such GP vaccines are typically autologous and limited to the other members of the same species. In contrast, T-cell vaccines offer a possibility to design a single pan-filovirus vaccine protecting against all known and even likely existing, but as yet unencountered members of the family. Here, we used a cross-filovirus immunogen based on conserved regions of the filovirus nucleoprotein, matrix and polymerase to construct simian adenovirus- and poxvirus MVA-vectored vaccines, and in a proof-of-concept study demonstrated a protection of the BALB/c and C57BL/6J mice against high, lethal challenges with Ebola and Marburg viruses, two distant members of the family, by vaccine-elicited T cells in the absence of GP antibodies.


Assuntos
Filoviridae/imunologia , Linfócitos T/imunologia , Vacinas Virais/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Ebola , Ebolavirus/patogenicidade , Feminino , Filoviridae/metabolismo , Filoviridae/patogenicidade , Doença pelo Vírus Ebola , Imunidade Celular/imunologia , Masculino , Marburgvirus/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , Linfócitos T/metabolismo
16.
Am J Pathol ; 190(9): 1867-1880, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479821

RESUMO

The most commonly reported symptom of post-Ebola virus disease syndrome in survivors is arthralgia, yet involvement of the joints in acute or convalescent Ebola virus infection is not well characterized in human patients or animal models. Through immunohistochemistry, we found that the lining synovial intima of the stifle (knee) is a target for acute infection by Ebola virus/Kikwit, Ebola virus/Makona-C05, and Marburg virus/Angola in the rhesus macaque model. Furthermore, histologic analysis, immunohistochemistry, RNAscope in situ hybridization, and transmission electron microscopy showed that synoviocytes of the stifle, shoulder, and hip are a target for mouse-adapted Ebola virus/Yambuku-Mayinga infection during acute disease in rhesus macaques. A time course of infection study with Ebola virus/Kikwit found that the large joint synovium became immunopositive beginning on postinfection day 6. In total, the synovium of 28 of 30 rhesus macaques with terminal filovirus disease had evidence of infection (64 of 96 joints examined). On the basis of immunofluorescence, infected cell types included CD68+ type A (macrophage-like) synoviocytes and CD44+ type B (fibroblast-like) synoviocytes. Cultured primary human fibroblast-like synoviocytes were permissive to infection with Ebola and Marburg viruses in vitro. Because synovial joints include immune privileged sites, these findings are significant for future investigations of filovirus pathogenesis and persistence as well as arthralgias in acute and convalescent filovirus disease.


Assuntos
Infecções por Filoviridae/virologia , Sinoviócitos/virologia , Animais , Células Cultivadas , Filoviridae , Humanos , Macaca mulatta
17.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32034942

RESUMO

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Assuntos
Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae , Infecções por Henipavirus/veterinária , Henipavirus , Animais , Quirópteros/sangue , Quirópteros/classificação , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Testes Sorológicos , Trinidad e Tobago/epidemiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32513799

RESUMO

Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood. We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition. We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analyzed correlation of antiviral activity with four chemical properties: pKa, hydrophobicity (octanol/water partitioning coefficient; ClogP), molecular weight, and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structures (analogues) to those of strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall, 11 out of 45 (24%) CADs inhibited MARVpp by 40% or more. The strongest antiviral compounds were dronedarone, triparanol, and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP > 4), and DIPL. Moreover, pKa and intramolecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity but to a lesser extent. We also showed that in contrast to analogues, derivatives had antiviral activity similar to that of the seed compound dronedarone. Overall, one-quarter of CADs inhibit MARVpp entry in vitro, and antiviral activity of CADs mostly relies on their hydrophobicity yet is promoted by the individual structure.


Assuntos
Filoviridae , Marburgvirus , Preparações Farmacêuticas , Antivirais/farmacologia , Internalização do Vírus
19.
Biochem Biophys Res Commun ; 525(2): 392-397, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32093889

RESUMO

The family Filoviridae contains many important human viruses, including Marburg virus (MARV) and Ebola virus (EBOV). Menglà virus (MLAV), a newly discovered filovirus, is considered a potential human pathogen. The VP30 C-terminal domain (CTD) of these filoviruses plays an essential role in virion assembly. In common with other filoviruses, MLAV VP30 CTD mainly exists as a dimer in solution. In this work, we determined the crystal structure of recombinant MLAV VP30 CTD monomer, verifying that C-terminal helix-7 (H7) is critical for the dimerization process. This study provides a preliminary model for investigation of MLAV VP30 CTD as an anti-filovirus drug development target.


Assuntos
Infecções por Filoviridae/virologia , Filoviridae/química , Proteínas Virais/química , Animais , Cristalografia por Raios X , Descoberta de Drogas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica
20.
Arch Virol ; 165(10): 2165-2176, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740830

RESUMO

The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Infecções por Vírus de RNA/genética , Apoptose/genética , Autofagia/genética , Autofagia/imunologia , Citocinas/genética , Citocinas/imunologia , Endocitose/genética , Endocitose/imunologia , Filoviridae/genética , Filoviridae/metabolismo , Filoviridae/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Interferons/genética , Interferons/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidade , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Paramyxoviridae/patogenicidade , Fosfatidilinositol 3-Quinase/imunologia , Pneumovirinae/genética , Pneumovirinae/metabolismo , Pneumovirinae/patogenicidade , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Rhabdoviridae/patogenicidade , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/imunologia , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA