Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(8): e1009843, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379707

RESUMO

In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients' peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings.


Assuntos
Injúria Renal Aguda/patologia , Linfócitos B/imunologia , Infecções por Hantavirus/imunologia , Cadeias Leves de Imunoglobulina/sangue , Ativação Linfocitária/imunologia , Orthohantavírus/imunologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Infecções por Hantavirus/sangue , Infecções por Hantavirus/virologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia
2.
PLoS Pathog ; 16(4): e1008483, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32330200

RESUMO

Pathogenic hantaviruses, genus Orthohantaviridae, are maintained in rodent reservoirs with zoonotic transmission to humans occurring through inhalation of rodent excreta. Hantavirus disease in humans is characterized by localized vascular leakage and elevated levels of circulating proinflammatory cytokines. Despite the constant potential for deadly zoonotic transmission to humans, specific virus-host interactions of hantaviruses that lead to innate immune activation, and how these processes impart disease, remain unclear. In this study, we examined the mechanisms of viral recognition and innate immune activation of Hantaan orthohantavirus (HTNV) infection. We identified the RIG-I-like receptor (RLR) pathway as essential for innate immune activation, interferon (IFN) production, and interferon stimulated gene (ISG) expression in response to HTNV infection in human endothelial cells, and in murine cells representative of a non-reservoir host. Our results demonstrate that innate immune activation and signaling through the RLR pathway depends on viral replication wherein the host response can significantly restrict replication in target cells in a manner dependent on the type 1 interferon receptor (IFNAR). Importantly, following HTNV infection of a non-reservoir host murine model, IFNAR-deficient mice had higher viral loads, increased persistence, and greater viral dissemination to lung, spleen, and kidney compared to wild-type animals. Surprisingly, this response was MAVS independent in vivo. Innate immune profiling in these tissues demonstrates that HTNV infection triggers expression of IFN-regulated cytokines early during infection. We conclude that the RLR pathway is essential for recognition of HTNV infection to direct innate immune activation and control of viral replication in vitro, and that additional virus sensing and innate immune response pathways of IFN and cytokine regulation contribute to control of HTNV in vivo. These results reveal a critical role for innate immune regulation in driving divergent outcomes of HTNV infection, and serve to inform studies to identify therapeutic targets to alleviate human hantavirus disease.


Assuntos
Proteína DEAD-box 58/imunologia , Infecções por Hantavirus/imunologia , Interferon Tipo I/imunologia , Orthohantavírus/fisiologia , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Citocinas/imunologia , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/metabolismo , Orthohantavírus/imunologia , Orthohantavírus/metabolismo , Orthohantavírus/patogenicidade , Infecções por Hantavirus/metabolismo , Infecções por Hantavirus/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Camundongos , Receptor de Interferon alfa e beta/metabolismo , Receptores Imunológicos , Transdução de Sinais/imunologia , Células Vero
3.
Immunology ; 163(3): 262-277, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638192

RESUMO

Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.


Assuntos
Infecções por Hantavirus/imunologia , Orthohantavírus/fisiologia , Vacinas Virais/imunologia , Animais , Parada Cardíaca , Febre Hemorrágica com Síndrome Renal , Humanos , Imunidade Celular , Camundongos , Zoonoses Virais
4.
Arch Virol ; 166(1): 275-280, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201342

RESUMO

The infectivity of shrew-borne hantaviruses to humans is still unclear because of the lack of a serodiagnosis method for these viruses. In this study, we prepared recombinant nucleocapsid (rN) proteins of Seewis orthohantavirus, Altai orthohantavirus (ALTV), Thottapalayam thottimvirus (TPMV), and Asama orthohantavirus. Using monospecific rabbit sera, no antigenic cross-reactivity was observed. In a serosurvey of 104 samples from renal patients and 271 samples from heathy controls from Sri Lanka, one patient serum and two healthy control sera reacted with rN proteins of ALTV and TPMV, respectively. The novel assays should be applied to investigate potential infectivity of shrew-borne hantaviruses to humans.


Assuntos
Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Orthohantavírus/imunologia , Musaranhos/virologia , Animais , Estudos de Casos e Controles , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo/imunologia , Filogenia , Vírus de RNA/imunologia , Coelhos , Proteínas Recombinantes/imunologia , Testes Sorológicos/métodos , Sri Lanka , Células Vero
5.
Emerg Infect Dis ; 25(11): 2133-2135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625853

RESUMO

During 2008-2018, we collected samples from rodents and patients throughout the Czech Republic and characterized hantavirus isolates. We detected Dobrava-Belgrade and Puumala orthohantaviruses in patients and Dobrava-Belgrade, Tula, and Seewis orthohantaviruses in rodents. Increased knowledge of eco-epidemiology of hantaviruses will improve awareness among physicians and better outcomes of patients.


Assuntos
Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Epidemiologia Molecular , Orthohantavírus/genética , Animais , Anticorpos Antivirais , República Tcheca/epidemiologia , Genes Virais , Orthohantavírus/imunologia , Infecções por Hantavirus/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Filogenia
6.
PLoS Pathog ; 13(6): e1006462, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640917

RESUMO

Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients' bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients.


Assuntos
Endotélio Vascular/virologia , Infecções por Hantavirus/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Fagócitos/virologia , Síndrome Pulmonar por Hantavirus/imunologia , Síndrome Pulmonar por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/imunologia , Humanos , Imunidade Humoral/imunologia , Fagócitos/imunologia , RNA Viral/genética
7.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202761

RESUMO

Hantavirus infection, which causes zoonotic diseases with a high mortality rate in humans, has long been a global public health concern. Over the past decades, accumulating evidence suggests that long noncoding RNAs (lncRNAs) play key regulatory roles in innate immunity. However, the involvement of host lncRNAs in hantaviral control remains uncharacterized. In this study, we identified the lncRNA NEAT1 as a vital antiviral modulator. NEAT1 was dramatically upregulated after Hantaan virus (HTNV) infection, whereas its downregulation in vitro or in vivo delayed host innate immune responses and aggravated HTNV replication. Ectopic expression of NEAT1 enhanced beta interferon (IFN-ß) production and suppressed HTNV infection. Further investigation suggested that NEAT1 served as positive feedback for RIG-I signaling. HTNV infection activated NEAT1 transcription through the RIG-I-IRF7 pathway, whereas NEAT1 removed the transcriptional inhibitory effects of the splicing factor proline- and glutamine-rich protein (SFPQ) by relocating SFPQ to paraspeckles, thus promoting the expression of RIG-I and DDX60. RIG-I and DDX60 had synergic effects on IFN production. Taken together, our findings demonstrate that NEAT1 modulates the innate immune response against HTNV infection, providing another layer of information about the role of lncRNAs in controlling viral infections.IMPORTANCE Hantaviruses have attracted worldwide attention as archetypal emerging pathogens. Recently, increasing evidence has highlighted long noncoding RNAs (lncRNAs) as key regulators of innate immunity; however, their roles in hantavirus infection remain unknown. In the present work, a new unexplored function of lncRNA NEAT1 in controlling HTNV replication was found. NEAT1 promoted interferon (IFN) responses by acting as positive feedback for RIG-I signaling. This lncRNA was induced by HTNV through the RIG-I-IRF7 pathway in a time- and dose-dependent manner and promoted HTNV-induced IFN production by facilitating RIG-I and DDX60 expression. Intriguingly, NEAT1 relocated SFPQ and formed paraspeckles after HTNV infection, which might reverse inhibitive effects of SFPQ on the transcription of RIG-I and DDX60. To the best of our knowledge, this is the first study to address the regulatory role of the lncRNA NEAT1 in host innate immunity after HTNV infection. In summary, our findings provide additional insights regarding the role of lncRNAs in controlling viral infections.


Assuntos
Proteína DEAD-box 58/metabolismo , Vírus Hantaan/genética , Vírus Hantaan/imunologia , Infecções por Hantavirus/imunologia , Imunidade Inata/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Vírus Hantaan/crescimento & desenvolvimento , Infecções por Hantavirus/virologia , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferon beta/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Processamento Associado a PTB/metabolismo , Interferência de RNA , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais/genética , Células Vero , Replicação Viral/genética
8.
J Cell Biochem ; 118(8): 2320-2324, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28106282

RESUMO

Hantaviruses are emerging viral pathogens that causes hantavirus cardiopulmonary syndrome (HCPS) in the Americas, a severe, sometimes fatal, respiratory disease in humans with a case fatality rate of ≥50%. IgM and IgG-based serological detection methods are the most common approaches used for laboratory diagnosis of hantaviruses. Such emerging viral pathogens emphasizes the need for improved rapid diagnostic devices and vaccines incorporating pan-specific epitopes of genotypes. We predicted linear B-cell epitopes for hantaviruses that are specific to genotypes causing HCPS in humans using in silico prediction servers. We modeled the Andes and Sin Nombre hantavirus nucleocapsid protein to locate the identified epitopes. Based on the mean percent prediction probability score, epitope IMASKSVGS/TAEEKLKKKSAF was identified as the best candidate B-cell epitope specific for hantaviruses causing HCPS. Promiscuous epitopes were identified in the C-terminal of the protein. Our study for the first time has reported pan-specific B-cell epitopes for developing immunoassays in the detection of antibodies to hantaviruses causing HCPS. Identification of epitopes with pan-specific recognition of all genotypes causing HCPS could be valuable for the development of immunodiagnositic tools toward pan-detection of hantavirus antibodies in ELISA. J. Cell. Biochem. 118: 2320-2324, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Síndrome Pulmonar por Hantavirus/imunologia , Síndrome Pulmonar por Hantavirus/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/imunologia , Orthohantavírus/imunologia , Genótipo , Orthohantavírus/patogenicidade , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/metabolismo , Humanos , Imunoensaio , Estrutura Secundária de Proteína
9.
J Virol ; 90(14): 6200-6215, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27099308

RESUMO

UNLABELLED: Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE: Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.


Assuntos
Infecções por Hantavirus/imunologia , Infecções por Hantavirus/patologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Orthohantavírus/patogenicidade , Animais , Conservadores da Densidade Óssea/administração & dosagem , Chlorocebus aethiops , Ácido Clodrônico/administração & dosagem , Cricetinae , Feminino , Infecções por Hantavirus/prevenção & controle , Infecções por Hantavirus/virologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Mesocricetus , Células Vero
10.
J Med Virol ; 89(10): 1720-1725, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28561377

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) and hantavirus infections are the two viral hemorrhagic fevers spread in Europe. To test actual circulation of CCHF virus (CCHFV) and hantaviruses in Bulgaria, we conducted country-wide seroepidemiological studies. Serum samples were collected prospectively from 1500 residents of all 28 districts in Bulgaria. CCHFV seroprevalence of 3.7% was revealed. Anamnesis for tick bites, contact with livestock, age over 40 years and residency in Haskovo district were found as risk factors. The highest CCHFV seroprevalence was observed in the known endemic districts in southeastern Bulgaria: Haskovo (28%) and Yambol (12%). Reactive samples were found in residents of 20 of the 28 districts in Bulgaria. In comparison with the previous studies, the data presented indicate that CCHFV increased substantially its circulation in the endemic regions and was introduced in many new areas. Hantavirus seroprevalence was based on results of the immunoblot and estimated as 3.1%. Surprisingly, contrary to all available data, Puumala virus seroprevalence rate was 2.3% versus 0.8% of Dobrava-Belgrade virus. Evidence for hantavirus IgG seropositivity was found in residents of 23 of the 28 districts in the country. The first hantavirus seroprevalence study in Bulgaria showed that Puumala virus is probably more wide-spread in the country than Dobrava-Belgrade virus.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/epidemiologia , Orthohantavírus/imunologia , Estudos Soroepidemiológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bulgária/epidemiologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Pessoa de Meia-Idade , Picadas de Carrapatos , Adulto Jovem
11.
Mikrobiyol Bul ; 50(2): 245-55, 2016 Apr.
Artigo em Turco | MEDLINE | ID: mdl-27175497

RESUMO

Hantaviruses infect humans via inhalation of viral particles in infected rodents' secretions such as saliva, urine and faeces or via direct contact with infected rodents. The rodent species that are known as the carriers of Dobrava (DOBV), Puumala (PUUV), Saaremaa (SAAV), Tula (TULV) and Seoul (SEOV) viruses are found in our country. The presence of specific antibodies against hantaviruses have been demonstrated in rodents collected from Black Sea and Aegean Regions of Turkey in 2004 for the first time. The first hantavirus-related hemorrhagic fever with renal syndrome (HFRS) cases were reported in Black Sea region in 2009. The determination of the hantavirus prevalence in wild life and rodent populations in the field is crucial for the information about hantavirus-related cases and to clarify the state of risk. There is no commercial product optimized for the screening of rodent serum samples in terms of HFRS agents like DOBV and PUUV that are widely seen in Eurasia as well as Turkey. In this study, the antigens belonging to the commercial enzyme-linked immunoassay (ELISA) and immunoblot tests that are produced for the screening of human sera were used for the development of antibody screening tests against hantavirus in rodent sera and were optimized. The most appropriate serum and conjugate dilutions were determined for the optimization of ELISA (Anti-Hantavirus Pool ELISA; Euroimmun, Germany) and immunoblot (Euroline Anti-Hanta Profile 1 strips; Euroimmun, Germany) methods. Optimized ELISA method was used for the screening and optimized immunoblot method was used for the confirmation. A total of 84 wild rodent sera that belonged to Apodemus and Microtus species were evaluated with this procedure and the cut-off value, sensitivity and specificity of optimized ELISA method were determined. For the optimization of ELISA 1/50, 1/100 and 1/200 serum dilutions and 1/10.000, 1/20.000 and 1/40.000 conjugate dilutions were tested. For the optimization of immunoblot, 1/50 and 1/100 serum dilutions and 1/5.000 and 1/10.000 conjugate dilutions were tested. The horseradish peroxidase conjugated goat anti-mouse IgG for ELISA and the alkaline phosphatase conjugated goat anti-mouse IgG for immunoblot were used. We followed the manufacturer's recommendations for the incubation parameters, substrate and the number of washes. 1/50 serum dilution and 1/10.000 conjugate dilution for ELISA and 1/100 serum dilution and 1/5.000 conjugate dilution for immunoblot were determined as optimal concentrations. By using the optimized ELISA, 26.2% (22/84) of rodents were found positive for hantavirus antibodies according the determined cut-off value (OD(450/620): 0.325). By using immunoblot as a confirmatory test, 20 out of 22 ELISA positive samples could be studied because of the insufficient amount of sera and 17 of them was found positive in terms of DOBV antibodies. Of these rodents 11 were Apodemus flavicollis, three were Apodemus agrarius, two were Microtus guentheri and one was Apodemus sylvaticus. When the results of ELISA were compared to immunoblot results, the optimized ELISA's sensitivity and specificity were found as 100% and 95%, respectively. In this study, a method that can be used in the screening of rodent sera was constituted which uses commercial antigens that can be provided easily, gives fast and reliable results. Similar serological methods optimized for different types of rodents are of great importance for the realization of active follow-up and monitoring of the studies in the field.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/veterinária , Imunoglobulina G/sangue , Orthohantavírus/imunologia , Doenças dos Roedores/virologia , Animais , Animais Selvagens , Arvicolinae , Ensaio de Imunoadsorção Enzimática , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Humanos , Immunoblotting , Murinae , Prevalência , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/imunologia , Roedores , Sensibilidade e Especificidade , Turquia
12.
Clin Infect Dis ; 61(12): e62-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26394672

RESUMO

BACKGROUND: Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). METHODS: A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. RESULTS: Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). CONCLUSIONS: The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis.


Assuntos
Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Interleucinas/genética , Orthohantavírus/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Chile , Feminino , Estudos de Associação Genética , Técnicas de Genotipagem , Infecções por Hantavirus/imunologia , Humanos , Lactente , Recém-Nascido , Interferons , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
J Gen Virol ; 96(Pt 7): 1664-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25787939

RESUMO

Puumala virus (PUUV, carried by Myodes glareolus) co-circulates with Seewis virus (SWSV, carried by Sorex araneus) in Finland. While PUUV causes 1000-3000 nephropathia epidemica (NE) cases annually, the pathogenicity of SWSV to man is unknown. To study the prevalence of SWSV antibodies in hantavirus fever-like patients' sera, we used recombinant SWSV nucleocapsid (N) protein as the antigen in ELISA, immunofluorescence assay (IFA) and immunoblotting. While characterizing the recombinant SWSV N protein, we observed that a polyclonal rabbit antiserum against PUUV N protein cross-reacted with SWSV N protein and vice versa. We initially screened 486 (450 PUUV-seronegative and 36 PUUV-seropositive) samples sent to Helsinki University Hospital Laboratory for PUUV serodiagnosis during 2002 and 2007 in an SWSV N protein IgG ELISA. In total, 4.2 % (19/450) of the PUUV-seronegative samples were reactive in the SWSV N protein IgG ELISA and none of the tested samples [43 PUUV-seronegative (weakly reactive in the SWSV IgG ELISA) and 15 random] were reactive in the SWSV N protein IgM ELISA. None of the IgG reactions could be confirmed by IFA or immunoblotting. Furthermore, among the 36 PUUV-seropositive samples three were reactive in SWSV N protein IgG and ten in SWSV N protein IgM ELISA. One PUUV-seropositive sample reacted with SWSV N protein in IFA and four in immunoblotting. Finally, we applied competitive ELISA to confirm that the observed reactivity was due to cross-reactivity rather than a true SWSV response. In conclusion, no evidence of SWSV infection was found among the 486 samples studied; however, we did demonstrate that PUUV antiserum cross-reacted with shrew-borne hantavirus N protein.


Assuntos
Anticorpos Antivirais/sangue , Reações Cruzadas , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Virus Puumala/imunologia , Animais , Antígenos Virais/imunologia , Arvicolinae , Ensaio de Imunoadsorção Enzimática , Eulipotyphla , Feminino , Finlândia/epidemiologia , Técnica Indireta de Fluorescência para Anticorpo , Infecções por Hantavirus/virologia , Humanos , Immunoblotting , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Nucleocapsídeo/imunologia , Coelhos , Estudos Soroepidemiológicos , Musaranhos/virologia
14.
J Virol ; 88(15): 8319-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829335

RESUMO

UNLABELLED: Hantavirus cardiopulmonary syndrome (HCPS) is a rodent-borne disease with a high case-fatality rate that is caused by several New World hantaviruses. Each pathogenic hantavirus is naturally hosted by a principal rodent species without conspicuous disease and infection is persistent, perhaps for life. Deer mice (Peromyscus maniculatus) are the natural reservoirs of Sin Nombre virus (SNV), the etiologic agent of most HCPS cases in North America. Deer mice remain infected despite a helper T cell response that leads to high-titer neutralizing antibodies. Deer mice are also susceptible to Andes hantavirus (ANDV), which causes most HCPS cases in South America; however, deer mice clear ANDV. We infected deer mice with SNV or ANDV to identify differences in host responses that might account for this differential outcome. SNV RNA levels were higher in the lungs but not different in the heart, spleen, or kidneys. Most ANDV-infected deer mice had seroconverted 14 days after inoculation, but none of the SNV-infected deer mice had. Examination of lymph node cell antigen recall responses identified elevated immune gene expression in deer mice infected with ANDV and suggested maturation toward a Th2 or T follicular helper phenotype in some ANDV-infected deer mice, including activation of the interleukin 4 (IL-4) pathway in T cells and B cells. These data suggest that the rate of maturation of the immune response is substantially higher and of greater magnitude during ANDV infection, and these differences may account for clearance of ANDV and persistence of SNV. IMPORTANCE: Hantaviruses persistently infect their reservoir rodent hosts without pathology. It is unknown how these viruses evade sterilizing immune responses in the reservoirs. We have determined that infection of the deer mouse with its homologous hantavirus, Sin Nombre virus, results in low levels of immune gene expression in antigen-stimulated lymph node cells and a poor antibody response. However, infection of deer mice with a heterologous hantavirus, Andes virus, results in a robust lymph node cell response, signatures of T and B cell maturation, and production of antibodies. These findings suggest that an early and aggressive immune response to hantaviruses may lead to clearance in a reservoir host and suggest that a modest immune response may be a component of hantavirus ecology.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/veterinária , Linfócitos/imunologia , Orthohantavírus/imunologia , Vírus Sin Nombre/imunologia , Estruturas Animais/virologia , Animais , Reservatórios de Doenças , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Masculino , Peromyscus , RNA Viral/análise , RNA Viral/genética , Carga Viral
15.
J Virol ; 88(13): 7178-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719427

RESUMO

UNLABELLED: Hantavirus infections are characterized by vascular hyperpermeability and neutrophilia. However, the pathogenesis of this disease is poorly understood. Here, we demonstrate for the first time that pulmonary vascular permeability is increased by Hantaan virus infection and results in the development of pulmonary edema in C.B-17 severe combined immunodeficiency (SCID) mice lacking functional T cells and B cells. Increases in neutrophils in the lung and blood were observed when pulmonary edema began to be observed in the infected SCID mice. The occurrence of pulmonary edema was inhibited by neutrophil depletion. Moreover, the pulmonary vascular permeability was also significantly suppressed by neutrophil depletion in the infected mice. Taken together, the results suggest that neutrophils play an important role in pulmonary vascular hyperpermeability and the occurrence of pulmonary edema after hantavirus infection in SCID mice. IMPORTANCE: Although hantavirus infections are characterized by the occurrence of pulmonary edema, the pathogenic mechanism remains largely unknown. In this study, we demonstrated for the first time in vivo that hantavirus infection increases pulmonary vascular permeability and results in the development of pulmonary edema in SCID mice. This novel mouse model for human hantavirus infection will be a valuable tool and will contribute to elucidation of the pathogenetic mechanisms. Although the involvement of neutrophils in the pathogenesis of hantavirus infection has largely been ignored, the results of this study using the mouse model suggest that neutrophils are involved in the vascular hyperpermeability and development of pulmonary edema in hantavirus infection. Further study of the mechanisms could lead to the development of specific treatment for hantavirus infection.


Assuntos
Permeabilidade Capilar/imunologia , Infecções por Hantavirus/complicações , Pulmão/imunologia , Camundongos SCID/virologia , Neutrófilos/imunologia , Orthohantavírus/patogenicidade , Edema Pulmonar/etiologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Orthohantavírus/imunologia , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Humanos , Técnicas Imunoenzimáticas , Pulmão/virologia , Camundongos , Neutrófilos/metabolismo , Edema Pulmonar/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/virologia
16.
PLoS Pathog ; 9(3): e1003272, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555267

RESUMO

Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response.


Assuntos
Apoptose/imunologia , Infecções por Hantavirus/imunologia , Células Endoteliais da Veia Umbilical Humana/virologia , Células Matadoras Naturais/virologia , Orthohantavírus/imunologia , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Sequência de Bases , Caspase 3/metabolismo , Inibidores de Caspase , Degranulação Celular , Células Cultivadas , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade , Granzimas/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Dados de Sequência Molecular
17.
J Gen Virol ; 95(Pt 11): 2356-2364, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25013204

RESUMO

Hantaviruses are zoonotic viruses that cause life-threatening diseases when transmitted to humans. Severe hantavirus infection is manifested by impairment of renal function, pulmonary oedema and capillary leakage. Both innate and adaptive immune responses contribute to the pathogenesis, but the underlying mechanisms are not fully understood. Here, we showed that galectin-3-binding protein (Gal-3BP) was upregulated as a result of hantavirus infection both in vitro and in vivo. Gal-3BP is a secreted glycoprotein found in human serum, and increased Gal-3BP levels have been reported in chronic viral infections and in several types of cancer. Our in vitro experiments showed that, whilst Vero E6 cells (an African green monkey kidney cell line) constitutively expressed and secreted Gal-3BP, this protein was detected in primary human cells only as a result of hantavirus infection. Analysis of Gal-3BP levels in serum samples of cynomolgus macaques infected experimentally with hantavirus indicated that hantavirus infection induced Gal-3BP also in vivo. Finally, analysis of plasma samples collected from patients hospitalized because of acute hantavirus infection showed higher Gal-3BP levels during the acute than the convalescent phase. Furthermore, the Gal-3BP levels in patients with haemorrhagic fever with renal syndrome correlated with increased complement activation and with clinical variables reflecting the severity of acute hantavirus infection.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/biossíntese , Proteínas de Transporte/biossíntese , Galectina 3/metabolismo , Glicoproteínas/biossíntese , Infecções por Hantavirus/metabolismo , Doença Aguda , Animais , Antígenos de Neoplasias/sangue , Antígenos Virais/metabolismo , Biomarcadores Tumorais/sangue , Proteínas de Transporte/sangue , Chlorocebus aethiops , Ativação do Complemento , Feminino , Glicoproteínas/sangue , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/metabolismo , Febre Hemorrágica com Síndrome Renal/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Macaca fascicularis , Masculino , Virus Puumala , Distribuição Tecidual , Células Vero
18.
Eur J Immunol ; 43(10): 2566-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23824566

RESUMO

Hantaviruses are emerging human pathogens. They induce an unusually strong antiviral response of human HLA class I (HLA-I) restricted CD8⁺ T cells that may contribute to tissue damage and hantavirus-associated disease. In this study, we analyzed possible hantaviral mechanisms that enhance the HLA-I antigen presentation machinery. Upon hantavirus infection of various human and primate cell lines, we observed transactivation of promoters controlling classical HLA molecules. Hantavirus-induced HLA-I upregulation required proteasomal activity and was associated with increased TAP expression. Intriguingly, human DCs acquired the capacity to cross-present antigen upon hantavirus infection. Furthermore, knockdown of TIR domain containing adaptor inducing IFN-ß or retinoic acid inducible gene I abolished hantavirus-driven HLA-I induction. In contrast, MyD88-dependent viral sensors were not involved in HLA-I induction. Our results show that hantaviruses strongly boost the HLA-I antigen presentation machinery by mechanisms that are dependent on both retinoic acid inducible gene I and TIR domain containing adaptor inducing IFN-ß.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apresentação de Antígeno , Células Dendríticas/imunologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Receptores do Ácido Retinoico/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Chlorocebus aethiops , Apresentação Cruzada/genética , Células Dendríticas/virologia , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/genética , Regulação para Cima , Células Vero
19.
Immunology ; 140(2): 168-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23600567

RESUMO

Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4(+) and CD8(+) T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster.


Assuntos
Imunidade Adaptativa/imunologia , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/virologia , Mesocricetus/imunologia , Linfócitos T/imunologia , Animais , Cricetinae , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Orthohantavírus/imunologia , Orthohantavírus/patogenicidade , Mesocricetus/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sin Nombre/imunologia , Vírus Sin Nombre/patogenicidade , Replicação Viral/fisiologia
20.
Emerg Infect Dis ; 18(4): 571-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22469569

RESUMO

To increase our knowledge of the geographic distribution of hantaviruses associated with neotomine or sigmodontine rodents in Mexico, we tested 876 cricetid rodents captured in 18 Mexican states (representing at least 44 species in the subfamily Neotominae and 10 species in the subfamily Sigmodontinae) for anti-hantavirus IgG. We found antibodies against hantavirus in 35 (4.0%) rodents. Nucleotide sequence data from 5 antibody-positive rodents indicated that Sin Nombre virus (the major cause of hantavirus pulmonary syndrome [HPS] in the United States) is enzootic in the Mexican states of Nuevo León, San Luis Potosí, Tamaulipas, and Veracruz. However, HPS has not been reported from these states, which suggests that in northeastern Mexico, HPS has been confused with other rapidly progressive, life-threatening respiratory diseases. Analyses of nucleotide sequence data from 19 other antibody-positive rodents indicated that El Moro Canyon virus and Limestone Canyon virus are geographically widely distributed in Mexico.


Assuntos
Infecções por Hantavirus/veterinária , Doenças dos Roedores/virologia , Sigmodontinae/virologia , Animais , Anticorpos Antivirais/sangue , Teorema de Bayes , Orthohantavírus/genética , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Imunoglobulina G/sangue , Pulmão/virologia , México/epidemiologia , Modelos Genéticos , Proteínas do Nucleocapsídeo/genética , Filogenia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/imunologia , Análise de Sequência de DNA , Sigmodontinae/imunologia , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA