Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(18): 6539-6547, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127842

RESUMO

Attaching polymers, especially polyethylene glycol (PEG), to protein drugs has emerged as a successful strategy to prolong circulation time in the bloodstream. The hypothesis is that the flexible chain wobbles on the protein's surface, thus resisting potential nonspecific adsorption. Such a theoretical framework may be challenged when a helical polyglutamate is used to conjugate with target proteins. In this study, we investigated the structure-activity relationships of polyglutamate-interferon conjugates P(EG3Glu)-IFN using molecular simulations. Our results show that the local crowding effect induced by oligoethylene glycols (i.e., EG3) is the primary driving force for helix formation in P(EG3Glu), and its helicity can be effectively increased by reducing the free volume of the two termini. Furthermore, it was found that the steric hindrance induced by IFN is not conductive to the helicity of P(EG3Glu) but contributes to its dominant orientation relative to interferon. The orientation of IFN relative to the helical P(EG3Glu) can help to protect the protein drug from neutralizing antibodies while maintaining its bioactivity. These findings suggest that the helical structure and its orientation are critical factors to consider when updating the theoretical framework for protein-polymer conjugates.


Assuntos
Interferons , Ácido Poliglutâmico , Interferons/química , Polietilenoglicóis/química , Polímeros/química , Proteínas
2.
Nucleic Acids Res ; 49(19): 11211-11223, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614173

RESUMO

Binding and unbinding of transcription factors to DNA are kinetically controlled to regulate the transcriptional outcome. Control of the release of the transcription factor NF-κB from DNA is achieved through accelerated dissociation by the inhibitor protein IκBα. Using single-molecule FRET, we observed a continuum of conformations of NF-κB in free and DNA-bound states interconverting on the subseconds to minutes timescale, comparable to in vivo binding on the seconds timescale, suggesting that structural dynamics directly control binding kinetics. Much of the DNA-bound NF-κB is partially bound, allowing IκBα invasion to facilitate DNA dissociation. IκBα induces a locked conformation where the DNA-binding domains of NF-κB are too far apart to bind DNA, whereas a loss-of-function IκBα mutant retains the NF-κB conformational ensemble. Overall, our results suggest a novel mechanism with a continuum of binding modes for controlling association and dissociation of transcription factors.


Assuntos
DNA/genética , Interferons/genética , Inibidor de NF-kappaB alfa/genética , Fator de Transcrição RelA/genética , Transcrição Gênica , Animais , Avidina/química , Sítios de Ligação , Biotina/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Interferons/química , Interferons/metabolismo , Sequências Repetidas Invertidas , Camundongos , Simulação de Dinâmica Molecular , Inibidor de NF-kappaB alfa/química , Inibidor de NF-kappaB alfa/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Imagem Individual de Molécula/métodos , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(6): 2103-2111, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655338

RESUMO

Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2',5'-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-ß and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.


Assuntos
Técnicas Biossensoriais , Endorribonucleases/química , Interferon beta/química , Interferons/química , Biossíntese de Proteínas , Linhagem Celular , Endorribonucleases/metabolismo , Humanos , Interferon beta/metabolismo , Interferons/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
4.
Chembiochem ; 21(18): 2595-2598, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32346955

RESUMO

Cyclic dinucleotides (CDNs) trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signaling pathway. To decipher this complex cellular process, a better correlation between structure and downstream function is required. Herein, we report the design and immunostimulatory effect of a novel group of c-di-GMP analogues. By employing an "atomic mutagenesis" strategy, changing one atom at a time, a class of gradually modified CDNs was prepared. These c-di-GMP analogues induce type-I interferon (IFN) production, with some being more potent than c-di-GMP, their native archetype. This study demonstrates that CDN analogues bearing modified nucleobases are able to tune the innate immune response in eukaryotic cells.


Assuntos
GMP Cíclico/imunologia , Interferons/imunologia , Nucleotídeos Cíclicos/imunologia , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Imunidade Inata , Interferons/química , Interferons/genética , Nucleotídeos Cíclicos/química , Transdução de Sinais/genética , Transdução de Sinais/imunologia
5.
Bioorg Med Chem Lett ; 30(2): 126819, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780305

RESUMO

Twenty-nine nucleoside analogues have been synthesized and evaluated in a cell based assay for their ability to activate the human Stimulator of Interferon Genes (hSTING), a key protein of the innate immune defense. Some 6-O-alkyl nucleoside analogues activate hSTING without associated cytotoxicity. SAR and combination studies were performed to decipher possible activation mechanism. The described nucleoside hSTING activators represent first-in-class modulators of the innate immune defense; a highly relevant target for antiviral, antibacterial, anticancer or Alzheimer's disease treatments and may present advantages over other types of hSTING activators.


Assuntos
Interferons/química , Purinas/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
6.
Mar Drugs ; 18(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549252

RESUMO

Chitosan nanoparticles (CS-NPs) are under increasing investigation for the delivery of therapeutic proteins, such as vaccines, interferons, and biologics. A large number of studies have been taken on the characteristics of CS-NPs, and very few of these studies have focused on the microstructure of protein-loaded NPs. In this study, we prepared the CS-NPs by an ionic gelation method, and bovine serum albumin (BSA) was used as a model protein. Dynamic high pressure microfluidization (DHPM) was utilized to post-treat the nanoparticles so as to improve the uniformity, repeatability and controllability. The BSA-loaded NPs were then characterized for particle size, Zeta potential, morphology, encapsulation efficiency (EE), loading capacity (LC), and subsequent release kinetics. To improve the long-term stability of NPs, trehalose, glucose, sucrose, and mannitol were selected respectively to investigate the performance as a cryoprotectant. Furthermore, trehalose was used to obtain re-dispersible lyophilized NPs that can significantly reduce the dosage of cryoprotectants. Multiple spectroscopic techniques were used to characterize BSA-loaded NPs, in order to explain the release process of the NPs in vitro. The experimental results indicated that CS and Tripolyphosphate pentasodium (TPP) spontaneously formed the basic skeleton of the NPs through electrostatic interactions. BSA was incorporated in the basic skeleton, adsorbed on the surface of the NPs (some of which were inlaid on the NPs), without any change in structure and function. The release profiles of the NPs showed high consistency with the multispectral results.


Assuntos
Quitosana/química , Crioprotetores/química , Portadores de Fármacos/química , Nanopartículas/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Temperatura Baixa/efeitos adversos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Interferons/administração & dosagem , Interferons/química , Tamanho da Partícula , Estabilidade Proteica , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Vacinas/administração & dosagem , Vacinas/química
7.
Biomacromolecules ; 20(8): 3000-3008, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31310511

RESUMO

Protein-polymer conjugation is a clinically validated approach to enhanced pharmacokinetic properties. However, the permanent attachment of polymers often leads to irreversibly reduced protein bioactivity and poor tissue penetration. As such, the use of protein-polymer conjugates for solid tumors remains elusive. Herein, we report a simple strategy using enzyme-activatable and size-shrinkable protein-polypeptide conjugates to overcome this clinical challenge. Briefly, a matrix metalloproteinase (MMP)-responsive peptide sequence is introduced between a therapeutic protein interferon (IFN) and a synthetic polypeptide P(EG3Glu)20. The resulting site-specific MMP-responsive conjugate, denoted as PEP20-M-IFN, can, therefore, release the attached P(EG3Glu)20 to achieve both protein activation and deep penetration into the tumor microenvironment (TME). Compared to a similarly produced nonresponsive analogue conjugate PEP20-IFN, our results find PEP20-M-IFN to show higher bioactivity in vitro, improved tumor retention, and deeper penetration in a MMP2-dependent manner. Moreover, systemic administration of PEP20-M-IFN shows outstanding antitumor efficacy in both OVCAR3 and SKOV3 ovarian tumor models in mice. This work highlights the releasable PEPylation strategy for protein drug potentiation at the TME and opens up new opportunities in clinics for the treatment of malignant solid tumors.


Assuntos
Ativadores de Enzimas/farmacologia , Interferons/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Polímeros/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Apoptose , Proliferação de Células , Ativadores de Enzimas/química , Feminino , Humanos , Interferons/química , Metaloproteinase 2 da Matriz/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Polímeros/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Am Chem Soc ; 140(3): 1170-1178, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29262256

RESUMO

Cyclization and polymer conjugation are two commonly used approaches for enhancing the pharmacological properties of protein drugs. However, cyclization of parental proteins often only affords a modest improvement in biochemical or cell-based in vitro assays. Moreover, very few studies have included a systematic pharmacological evaluation of cyclized protein-based therapeutics in live animals. On the other hand, polymer-conjugated proteins have longer circulation half-lives but usually show poor tumor penetration and suboptimal pharmacodynamics due to increased steric hindrance. We herein report the generation of a head-to-tail interferon-poly(α-amino acid) macrocycle conjugate circ-P(EG3Glu)20-IFN by combining the aforementioned two approaches. We then compared the antitumor pharmacological activity of this macrocycle conjugate against its linear counterparts, N-P(EG3Glu)20-IFN, C-IFN-P(EG3Glu)20, and C-IFN-PEG. Our results found circ-P(EG3Glu)20-IFN to show considerably greater stability, binding affinity, and in vitro antiproliferative activity toward OVCAR3 cells than the three linear conjugates. More importantly, circ-P(EG3Glu)20-IFN exhibited longer circulation half-life, remarkably higher tumor retention, and deeper tumor penetration in vivo. As a result, administration of the macrocyclic conjugate could effectively inhibit tumor progression and extend survival in mice bearing established xenograft human OVCAR3 or SKOV3 tumors without causing severe paraneoplastic syndromes. Taken together, our study provided until now the most relevant experimental evidence in strong support of the in vivo benefit of macrocyclization of protein-polymer conjugates and for its application in next-generation therapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Interferons/química , Interferons/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Interferons/farmacocinética , Interferons/uso terapêutico , Compostos Macrocíclicos/farmacocinética , Compostos Macrocíclicos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacocinética , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/uso terapêutico , Ratos Sprague-Dawley
9.
Bioconjug Chem ; 29(7): 2232-2238, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863329

RESUMO

The performance of many therapeutic proteins, including human interferon-α2b (IFN), is often impeded by their intrinsic instability to protease, poor pharmacokinetics, and strong immunity. Although PEGylation has been an effective approach to improve the pharmacokinetics of many proteins, a few noticeable limitations have aroused vast research efforts in seeking alternatives to PEG for bioconjugation. Herein, we report our investigation on the use of polysarcosine (PSar), a nonionic and hydrophilic polypeptoid, for IFN modification. The site-specific conjugate PSar-IFN, generated by native chemical ligation in high yield, is systematically compared with a similarly produced PEG-interferon conjugate (PEG-IFN) to evaluate the in vitro and in vivo behaviors. PSar is found to show comparable ability in stabilizing IFN from protease digestion in vitro and prolonging the circulation half-life in vivo. Interestingly, PSar-IFN retains more activity in vitro and accumulates more in the tumor sites upon systemic administration than PEG-IFN. Most importantly, PSar-IFN is significantly more potent in inhibiting tumor growth and elicits considerably less anti-IFN antibodies in mouse than PEG-IFN. Together, our results demonstrate for the first time that PSar is an outstanding candidate for therapeutic protein conjugation. Considering the low toxicity, biodegradability, and excellent stealth effect of PSar, this study suggests that such polypeptoids hold enormous potential for many biomedical applications including protein delivery, colloidal stabilization, and nanomedicine.


Assuntos
Peptídeos/química , Proteínas/química , Sarcosina/análogos & derivados , Animais , Formação de Anticorpos , Meia-Vida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Interferons/química , Interferons/imunologia , Interferons/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Proteínas/farmacocinética , Proteínas/uso terapêutico , Sarcosina/química
10.
Org Biomol Chem ; 16(28): 5097-5101, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29972388

RESUMO

A counterintuitive freezing-induced peptide ligation was discovered during the total synthesis of human interferon-ε (hIFN-ε) which blocks HIV infection through unique mechanisms. The successful synthesis of hIFN-ε (187 amino acids) in this research laid the foundation for related anti-AIDS drug development. Moreover, alanine mutation based on sequence alignment to solve the maldistribution of the ligation site and freezing-induced dominant conformation that facilitates peptide ligation are expected to be helpful for the synthesis of macrobiomolecules.


Assuntos
Descoberta de Drogas , Congelamento , Interferons/síntese química , Interferons/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Interferons/química , Modelos Moleculares , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 112(13): 3949-54, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775560

RESUMO

The mammalian innate immune system uses several sensors of double-stranded RNA (dsRNA) to develop the interferon response. Among these sensors are dsRNA-activated oligoadenylate synthetases (OAS), which produce signaling 2',5'-linked RNA molecules (2-5A) that activate regulated RNA decay in mammalian tissues. Different receptors from the OAS family contain one, two, or three copies of the 2-5A synthetase domain, which in several instances evolved into pseudoenzymes. The structures of the pseudoenzymatic domains and their roles in sensing dsRNA are unknown. Here we present the crystal structure of the first catalytically inactive domain of human OAS3 (hOAS3.DI) in complex with a 19-bp dsRNA, determined at 2.0-Å resolution. The conformation of hOAS3.DI is different from the apo- and the dsRNA-bound states of the catalytically active homolog, OAS1, reported previously. The unique conformation of hOAS3.DI disables 2-5A synthesis by placing the active site residues nonproductively, but favors the binding of dsRNA. Biochemical data show that hOAS3.DI is essential for activation of hOAS3 and serves as a dsRNA-binding module, whereas the C-terminal domain DIII carries out catalysis. The location of the dsRNA-binding domain (DI) and the catalytic domain (DIII) at the opposite protein termini makes hOAS3 selective for long dsRNA. This mechanism relies on the catalytic inactivity of domain DI, revealing a surprising role of pseudoenzyme evolution in dsRNA surveillance.


Assuntos
2',5'-Oligoadenilato Sintetase/química , RNA de Cadeia Dupla/química , Nucleotídeos de Adenina/química , Domínio Catalítico , Cristalografia por Raios X , Endorribonucleases/química , Células HeLa , Humanos , Imunidade Inata , Interferons/química , Modelos Moleculares , Oligorribonucleotídeos/química , Ligação Proteica , Estrutura Terciária de Proteína
12.
Biochem Biophys Res Commun ; 456(1): 197-201, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446123

RESUMO

Interferon (IFN) is a key component of the innate immune response to exogenous pathogens. Interferon increases the mRNA levels of interferon-stimulated genes (ISGs) in vivo, which is thought to account for its antiviral activity. Recent studies have indicated that human myxovirus resistance protein 2 (Mx2 or MxB), one of these ISGs, contributes to the inhibition of HIV-1 replication by interferon. MxB may bind to HIV-1 relatively late in the post-entry phase, and it leads to a reduced level of integrated viral DNA, thereby restricting HIV-1 infection. The N-terminal 91-aa domain of MxB and the assembly of MxB mediated by the Stalk domain have also been shown to be indispensible for MxB's anti-viral functions, but the mechanism involved has remained elusive. Here, we report the crystal structure (2.9Å) of the human MxB Stalk domain. MxB Stalk shows one dimer in the asymmetric unit. Each monomer contains a four-helix bundle. Interestingly, analyses of MxB dimer interfaces show that the majority of residues involved in the interface are not conserved between MxB and MxA, contributing to the building of a more stable MxB dimer. MxA and MxB Stalk domains share 46.7% sequence identity, and the structure of the MxA Stalk domain and the overall structure of MxB Stalk have a similar conformation. Our results indicate that although human Mx proteins share common structural characteristics, their dimerization strategies are unique, contributing to their unique contributions to viral restriction.


Assuntos
Dinaminas/química , Proteínas de Resistência a Myxovirus/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , HIV-1/fisiologia , Humanos , Interferons/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Replicação Viral
13.
BMC Biotechnol ; 15: 54, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26063245

RESUMO

BACKGROUND: In our previous study, a novel liver-targeting fusion interferon (IFN-CSP) combining IFN α2b with plasmodium region I peptide was successfully constructed. IFN-CSP has significant inhibition effects on HBV-DNA replication in HepG2.2.15 cells. The aim of the present investigation was focused on how to produce high levels of recombinant IFN-CSP and its in vivo anti-hepatitis B virus (HBV) activity. METHODS: A modified DNA fragment encoding IFN-CSP was synthesized according to Escherichia coli (E. coli) preferred codon usage and transformed into E. coli BL21 (DE3) for protein expression. The induction conditions were systematically examined by combining one-factor experiments with an orthogonal test (L(9)(3)(4)). The antigenicity of the purified protein was characterized by western blot analysis. The in vivo tissue distribution were assayed and compared with native IFN α2b. HBV-transgenic mice were used as in vivo model to evaluate the anti-HBV effect of the recombinant IFN-CSP. RESULTS: The results showed that the E. coli expression system was very efficient to produce target protein. CONCLUSION: Our current research demonstrates for the first time that IFN-CSP gene can be expressed at high levels in E. coli through codon and expression conditions optimization. The purified recombinant IFN-CSP showed liver-targeting potentiality and anti-HBV activity in vivo. The present study further supported the application of IFN-CSP in liver-targeting anti-HBV medicines.


Assuntos
Antivirais/metabolismo , Códon/genética , Escherichia coli/genética , Vírus da Hepatite B/efeitos dos fármacos , Interferons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacologia , Sequência de Bases , Interferons/química , Interferons/genética , Interferons/farmacologia , Fígado/metabolismo , Fígado/virologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
14.
Rinsho Byori ; 63(8): 901-6, 2015 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-26638424

RESUMO

The sustained virological response (SVR) rate in the patients with HCV has currently reached to 90% by the progression of anti-viral therapy. However, several reports demonstrated that hepatocellular carcinoma develops even in the patients with SVR. It is widely accepted that liver fibrosis plays a pivotal role in hepatocellular carcinogenesis. Thus, an accurate staging for liver fibrosis is necessary to improve long-term prognosis of hepatitis C patients. Recently, Mac-2 binding protein glycosylation isomer (M2BPGi) was identified as a novel hepatic fibrosis marker. In the present study, we compared the value of M2BPGi in serum before and after the anti-viral therapy in hepatitis C patients. The value of M2BPGi in patients with F2, F3, or F4 stagings was significantly higher than that in F1 staging. Moreover, the value of M2BPGi significantly decreased after the treatment with pegylated interferon plus ribavirin similarly to other liver fibrosis-related markers. In addition, the value of M2BPGi in patients with SVR was significantly decreased after the anti-viral therapy (P < 0.0001). The reduction of M2BPGi in SVR patients was thought to reflect the improvement of liver fibrosis, in conjunction with the reduction of viral load, after the treatment. In conclusion, the measurement of M2BPGi in serum might be useful in monitoring the improvement of liver fibrosis by anti-viral therapy.


Assuntos
Antivirais/uso terapêutico , Galectina 3/metabolismo , Hepatite C Crônica/tratamento farmacológico , Interferons/uso terapêutico , Ribavirina/uso terapêutico , Adulto , Idoso , Biomarcadores/sangue , Quimioterapia Combinada , Feminino , Galectina 3/química , Glicosilação , Hepatite C Crônica/diagnóstico , Humanos , Interferons/química , Masculino , Pessoa de Meia-Idade , Ligação Proteica
15.
Proteomics ; 14(10): 1249-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574185

RESUMO

Rapid development in biopharmaceuticals has put high demands on analytical tools that can provide accurate and comprehensive characterization of protein drugs, including biosimilars. Although the enzyme digestion based "bottom-up" approach is usually the method of choice for this purpose, it only gives peptide-level information and sequence coverage is often incomplete. In this work, we used top-down MS with electron capture dissociation (ECD) to characterize both the primary and higher order structures of a therapeutic protein interferon and its variants. Accurate mass measurement at the intact protein level combined with top-down ECD fragmentation enabled unambiguous protein sequence confirmation and identification of all PTMs. Combining hydrogen/deuterium exchange and rapid disulfide reduction with top-down ECD on the LC time scale, we have investigated the differences in higher order structure between the protein variants, as well as the impact of PTMs on protein conformation.


Assuntos
Medicamentos Biossimilares/química , Medição da Troca de Deutério/métodos , Interferons/química , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Medicamentos Biossimilares/análise , Dissulfetos , Humanos , Interferons/análise , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/análise , Proteínas Recombinantes/química
16.
J Biol Chem ; 288(1): 247-54, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23184955

RESUMO

Enzymatic addition of GalNAc to isotopically labeled IFNα2a produced in Escherichia coli yielded the O-linked glycoprotein GalNAcα-[(13)C,(15)N]IFNα2a. The three-dimensional structure of GalNAcα-IFNα2a has been determined in solution by NMR spectroscopy at high resolution. Proton-nitrogen heteronuclear Overhauser enhancement measurements revealed that the addition of a single monosaccharide unit at Thr-106 significantly slowed motions of the glycosylation loop on the nanosecond time scale. Subsequent addition of a Gal unit produced Gal(ß1,3)GalNAcα-[(13)C,(15)N]IFNα2a. This extension resulted in a further decrease in the dynamics of this loop. The methodology used here allowed the first such description of the structure and dynamics of an O-glycoprotein and opens the way to the study of this class of proteins.


Assuntos
Acetilgalactosamina/química , Interferon-alfa/metabolismo , Polissacarídeos/química , Treonina/química , Acetilgalactosamina/genética , Biologia Computacional/métodos , Dissulfetos/química , Escherichia coli/metabolismo , Glicoproteínas/química , Glicosilação , Humanos , Interferon alfa-2 , Interferons/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/metabolismo
17.
EMBO J ; 29(10): 1748-61, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20389280

RESUMO

Death-associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)-induced cell death. How IFN controls DAPK activation remains largely unknown. Here, we identify the BTB-Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch-repeat domain and BTB domain, respectively. The KLHL20-Cul3-ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20-mediated DAPK ubiquitination is suppressed in cells receiving IFN-alpha or IFN-gamma, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN-induced autophagy. This study identifies KLHL20-Cul3-ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN-induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.


Assuntos
Proteínas de Transporte/química , Proteínas Culina/química , Regulação da Expressão Gênica , Interferons/química , Ubiquitina/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Associadas com Morte Celular , Células HeLa , Humanos , Interferons/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Neoplasias/terapia , Fenótipo , Ubiquitina-Proteína Ligases/metabolismo
18.
Gynecol Endocrinol ; 30(1): 1-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24188446

RESUMO

The interferons (IFNs) form part of the large family of glycoproteins known as cytokines. They are secreted by host cells as a line of defence against pathogens and certain tumours. IFNs affect cell proliferation and differentiation and also play a very important role in the functioning of the immune system. Miscarriage in both humans has been associated with higher levels of IFN, particularly IFN-γ. However, this cytokine is evidently vital in successful murine pregnancies since it is involved in maintaining the decidual layer in addition to remodelling of the vasculature in the uterus. The effects of IFN on human pregnancies are more difficult to study. Hence, there is still a lot more to be discovered in the hope of reaching a definite conclusion regarding the impact of IFN.


Assuntos
Interferons/fisiologia , Primeiro Trimestre da Gravidez/imunologia , Aborto Espontâneo/genética , Aborto Espontâneo/imunologia , Animais , Implantação do Embrião/genética , Implantação do Embrião/imunologia , Feminino , Humanos , Interferons/química , Interferons/classificação , Polimorfismo Genético , Gravidez/genética , Gravidez/imunologia , Gravidez/metabolismo , Receptores de Interferon/classificação , Receptores de Interferon/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
Int J Mol Sci ; 15(11): 21045-68, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405736

RESUMO

Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal's age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon's antiviral activities and may provide the basis for new antiviral strategies.


Assuntos
Aves/genética , Interferons/genética , Filogenia , Receptores de Interferon/genética , Animais , Aves/metabolismo , Interferons/química , Interferons/metabolismo , Receptores de Interferon/química , Receptores de Interferon/metabolismo
20.
Postepy Hig Med Dosw (Online) ; 68: 428-40, 2014 May 06.
Artigo em Polonês | MEDLINE | ID: mdl-24864095

RESUMO

Interferons are a family of proteins that are released by a variety of cells in response to infections caused by viruses. Currently, we distinguish three types of interferons. They are classified based on the nucleotide sequence, interaction with specific receptors, chromosomal location, structure and physicochemical properties. The following interferons are classified as type I: α, ß, ω, κ, ε, ζ, τ, δ, ν. They are recognized and bound by a receptor formed by two peptides, IFN-αR1 and IFN-αR2. Representative of type II interferons is interferon-γ. It binds to a receptor composed of chains IFNGR-1 and IFNGR-2. The recently classified type III interferons comprise IFN-λ1, IFN-λ2, and IFN-λ3. They act on receptors formed by λR1 IFN-and IL-10R2 subunits. A high level of antiviral protection is achieved by IFN-α, IFN-ß and IFN-λ. Antiviral activity of interferons is based on the induction and regulation of innate and acquired immune mechanisms. By binding to transmembrane receptors, IFN interacts with target cells mainly by activating the JAK/STAT, but also other signaling pathways. This leads to induction and activation of many antiviral agents, such as protein kinase RNA-activated (PKR), ribonuclease 2-5A pathway, and Mx proteins, as well as numerous apoptotic pathways. As a result of the protective effect of interferons, the virus binding to cells and viral particles penetration into cells is stopped, and the release of the nucleocapsid from an envelope is suppressed. Disruption of transcription and translation processes of the structural proteins prevents the formation of virions or budding of viruses, and as a result degradation of the viral mRNA; the started processes inhibit the chain synthesis of viral proteins and therefore further stimulate the immune system cells.


Assuntos
Interferons/química , Interferons/imunologia , Ativação Metabólica/imunologia , Animais , Antivirais/farmacologia , Apoptose/fisiologia , Humanos , Interferon-alfa/química , Interferon-alfa/imunologia , Interferon gama/química , Interferon gama/imunologia , Interferons/classificação , Substâncias Protetoras/metabolismo , RNA Viral/metabolismo , Transdução de Sinais/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA