Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465619

RESUMO

The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.


Assuntos
Peste/epidemiologia , Peste/etiologia , Peste/genética , DNA Bacteriano/genética , Europa (Continente) , Genoma Bacteriano/genética , Genômica/métodos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Pandemias/história , Filogenia , Virulência/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade
2.
J Infect Dis ; 222(3): 407-416, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32128567

RESUMO

Early after inhalation, Yersinia pestis replicates to high numbers in the airways in the absence of disease symptoms or notable inflammatory responses to cause primary pneumonic plague. The plasminogen activator protease (Pla) is a critical Y. pestis virulence factor that is important for early bacterial growth in the lung via an unknown mechanism. In this article, we define a dual role for Pla in the initial stages of pulmonary infection. We show that Pla functions as an adhesin independent of its proteolytic function to suppress early neutrophil influx into the lungs, and that Pla enzymatic activity contributes to bacterial resistance to neutrophil-mediated bacterial killing. Our results suggest that the fate of Y. pestis infection of the lung is decided extremely early during infection and that Pla plays a dual role to tilt the balance in favor of the pathogen.


Assuntos
Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Peste/etiologia , Ativadores de Plasminogênio/fisiologia , Yersinia pestis/metabolismo , Animais , Aderência Bacteriana , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Virulência , Yersinia pestis/patogenicidade
3.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077628

RESUMO

Bubonic plague results when Yersinia pestis is deposited in the skin via the bite of an infected flea. Bacteria then traffic to the draining lymph node (dLN) where they replicate to large numbers. Without treatment, this infection can result in highly fatal septicemia. Several plague vaccine candidates are currently at various stages of development, but no licensed vaccine is available in the United States. Though polyclonal and monoclonal antibodies (Ab) can provide complete protection against bubonic plague in animal models, the mechanisms responsible for this antibody-mediated immunity (AMI) to Y. pestis remain poorly understood. Here, we examine the effects of Ab opsonization on Y. pestis interactions with phagocytes in vitro and in vivo Opsonization of Y. pestis with polyclonal antiserum modestly increased phagocytosis/killing by an oxidative burst of murine neutrophils in vitro Intravital microscopy (IVM) showed increased association of Ab-opsonized Y. pestis with neutrophils in the dermis in a mouse model of bubonic plague. IVM of popliteal LNs after intradermal (i.d.) injection of bacteria in the footpad revealed increased Y. pestis-neutrophil interactions and increased neutrophil crawling and extravasation in response to Ab-opsonized bacteria. Thus, despite only having a modest effect in in vitro assays, opsonizing Ab had a dramatic effect in vivo on Y. pestis-neutrophil interactions in the dermis and dLN very early after infection. These data shed new light on the importance of neutrophils in AMI to Y. pestis and may provide a new correlate of protection for evaluation of plague vaccine candidates.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peste/etiologia , Peste/patologia , Yersinia pestis/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo
4.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085709

RESUMO

Pneumonic plague is the deadliest form of disease caused by Yersinia pestis Key to the progression of infection is the activity of the plasminogen activator protease Pla. Deletion of Pla results in a decreased Y. pestis bacterial burden in the lung and failure to progress into the lethal proinflammatory phase of disease. While a number of putative functions have been attributed to Pla, its precise role in the pathogenesis of pneumonic plague is yet to be defined. Here, we show that Pla facilitates type 3 secretion into primary alveolar macrophages but not into the commonly used THP-1 cell line. We also establish human precision-cut lung slices as a platform for modeling early host/pathogen interactions during pneumonic plague and solidify the role of Pla in promoting optimal type 3 secretion using primary human tissue with relevant host cell heterogeneity. These results position Pla as a key player in the early host/pathogen interactions that define pneumonic plague and showcase the utility of human precision-cut lung slices as a platform to evaluate pulmonary infection by bacterial pathogens.


Assuntos
Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Peste/etiologia , Ativadores de Plasminogênio/fisiologia , Yersinia pestis/metabolismo , Animais , Aderência Bacteriana , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
PLoS Pathog ; 9(5): e1003349, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658525

RESUMO

Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.


Assuntos
Osso e Ossos/microbiologia , DNA Bacteriano/genética , Pandemias/história , Filogenia , Peste , Yersinia pestis/genética , Sequência de Bases , Feminino , Genótipo , História do Século XV , História do Século XVI , História do Século XVII , História do Século XIX , História do Século XX , História Medieval , Humanos , Masculino , Dados de Sequência Molecular , Peste/epidemiologia , Peste/etiologia , Peste/genética , Peste/história , Peste/microbiologia
6.
ED Manag ; 27(11): 126-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26550675

RESUMO

Health officials note an uptick in cases of bubonic plague in the United States this year, with at least 12 reported human cases reported since April 1. The CDC notes that healthcare providers should consider plague in patients who have traveled to plague-endemic areas and exhibit fever, headache, chills, weakness, and one or more swollen or tender and painful lymph nodes, referred to as buboes. Officials note that the disease rarely passes from person to person, but that this is a concern with patients who have developed the pneumonic form of the disease. Health officials note that in recent years there has been an average of seven cases of human plague each year in the United States, and that most of these cases are the bubonic form of the illness. Four patients confirmed to have plague this year have died, including the most recent case, a Utah man in his 70s. Most cases of plague in the United States occur in two regions. The first includes northern New Mexico, northern Arizona, and southern Colorado, and the second includes California, southern Oregon, and far western Nevada. When plague is suspected, treatment with antibiotics should begin immediately.


Assuntos
Busca de Comunicante , Peste/etiologia , Feminino , Humanos , Masculino , Saúde Pública , Estados Unidos
7.
BMC Infect Dis ; 14: 382, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25011940

RESUMO

BACKGROUND: Qinghai-Tibetan Plateau of China is known to be the plague endemic region where marmot (Marmota himalayana) is the primary host. Human plague cases are relatively low incidence but high mortality, which presents unique surveillance and public health challenges, because early detection through surveillance may not always be feasible and infrequent clinical cases may be misdiagnosed. METHODS: Based on plague surveillance data and environmental variables, Maxent was applied to model the presence probability of plague host. 75% occurrence points were randomly selected for training model, and the rest 25% points were used for model test and validation. Maxent model performance was measured as test gain and test AUC. The optimal probability cut-off value was chosen by maximizing training sensitivity and specificity simultaneously. RESULTS: We used field surveillance data in an ecological niche modeling (ENM) framework to depict spatial distribution of natural foci of plague in Qinghai-Tibetan Plateau. Most human-inhabited areas at risk of exposure to enzootic plague are distributed in the east and south of the Plateau. Elevation, temperature of land surface and normalized difference vegetation index play a large part in determining the distribution of the enzootic plague. CONCLUSIONS: This study provided a more detailed view of spatial pattern of enzootic plague and human-inhabited areas at risk of plague. The maps could help public health authorities decide where to perform plague surveillance and take preventive measures in Qinghai-Tibetan Plateau.


Assuntos
Modelos Estatísticos , Peste/epidemiologia , Humanos , Peste/etiologia , Peste/prevenção & controle , Vigilância da População , Fatores de Risco , Tibet/epidemiologia
8.
BMC Public Health ; 14: 325, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24708892

RESUMO

BACKGROUND: This qualitative investigation was conducted to determine the socio-epidemiological factors related to the plague outbreak (2002) in Himachal Pradesh (HP), India. METHODS: The data for socio-epidemiological factors related to the plague outbreak (2002) in HP was obtained from residents through 150 in-depth Interviews (IDI) and 30 Focus Group Discussions (FGD) during six visits (from May 2011 to April 2012) by the research team. Natives, health officials and the nomadic population were interviewed. According to their opinion and viewpoints data was collected and their lifestyle and hunting practices were studied in detail. Tape recorders were used during various FGDs and IDIs. The interviews and FGDs were later transcribed and coded. In-depth analysis of the recorded data was done using an inductive thematic analysis approach. RESULTS: The study reports that the outbreak in 2002 in a few villages of Himachal Pradesh was that of plague and it occurred by the contact of an index case with wild animals after hunting and de-skinning. The first wave of plague transmission which took 16 lives of residents was followed by a second wave of transmission in a ward of a tertiary care hospital where one visitor acquired it from relatives of the index case and succumbed. The life-style practices of residents (hunting behavior, long stay in caves and jungles, overcrowding in houses, poor hygiene and sanitation, belief in 'God' and faith healers for cure of diseases) was optimal for the occurrence and rapid spread of such a communicable disease. The man-rodent contact is intensified due to the practice of hunting in such a rodent-ridden environment. The residents harbor a strong belief that plague occurs due to the wrath of gods. Various un-reported outbreaks of plague were also observed by officials, residents and old folk. The persistence of plague in HP is favoured by its hilly terrain, inaccessible areas, inclement weather (snow) in winters, unhygienic lifestyle, hunting practices of residents, and treatment practices through faith healers. CONCLUSIONS: This study suggests that the lifestyle of the natives of HP and other socio-epidemiological factors played a role in the outbreak of plague in that area.


Assuntos
Surtos de Doenças , Peste/epidemiologia , Animais , Grupos Focais , Humanos , Índia/epidemiologia , Entrevistas como Assunto , Estilo de Vida , Masculino , Peste/etiologia , Peste/transmissão , Pesquisa Qualitativa , Roedores/microbiologia , Saneamento
9.
PLoS Pathog ; 6(10): e1001134, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949072

RESUMO

From AD 1347 to AD 1353, the Black Death killed tens of millions of people in Europe, leaving misery and devastation in its wake, with successive epidemics ravaging the continent until the 18(th) century. The etiology of this disease has remained highly controversial, ranging from claims based on genetics and the historical descriptions of symptoms that it was caused by Yersinia pestis to conclusions that it must have been caused by other pathogens. It has also been disputed whether plague had the same etiology in northern and southern Europe. Here we identified DNA and protein signatures specific for Y. pestis in human skeletons from mass graves in northern, central and southern Europe that were associated archaeologically with the Black Death and subsequent resurgences. We confirm that Y. pestis caused the Black Death and later epidemics on the entire European continent over the course of four centuries. Furthermore, on the basis of 17 single nucleotide polymorphisms plus the absence of a deletion in glpD gene, our aDNA results identified two previously unknown but related clades of Y. pestis associated with distinct medieval mass graves. These findings suggest that plague was imported to Europe on two or more occasions, each following a distinct route. These two clades are ancestral to modern isolates of Y. pestis biovars Orientalis and Medievalis. Our results clarify the etiology of the Black Death and provide a paradigm for a detailed historical reconstruction of the infection routes followed by this disease.


Assuntos
Peste/etiologia , Peste/transmissão , Yersinia pestis/fisiologia , Sequência de Bases , DNA Bacteriano/análise , Surtos de Doenças , Epidemias , Europa (Continente) , Marcadores Genéticos , Genótipo , Humanos , Programas de Rastreamento , Dados de Sequência Molecular , Filogenia , Peste/diagnóstico , Peste/epidemiologia , Peste/genética , Peste/microbiologia , Homologia de Sequência do Ácido Nucleico , Yersinia pestis/classificação , Yersinia pestis/genética
10.
MMWR Morb Mortal Wkly Rep ; 60(7): 201-5, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21346706

RESUMO

On September 18, 2009, the Chicago Department of Public Health (CDPH) was notified by a local hospital of a suspected case of fatal laboratory-acquired infection with Yersinia pestis, the causative agent of plague. The patient, a researcher in a university laboratory, had been working along with other members of the laboratory group with a pigmentation-negative (pgm-) attenuated Y. pestis strain (KIM D27). The strain had not been known to have caused laboratory-acquired infections or human fatalities. Other researchers in a separate university laboratory facility in the same building had contact with a virulent Y. pestis strain (CO92) that is considered a select biologic agent; however, the pgm- attenuated KIM D27 is excluded from the National Select Agent Registry. The university, CDPH, the Illinois Department of Public Health (IDPH), and CDC conducted an investigation to ascertain the cause of death. This report summarizes the results of that investigation, which determined that the cause of death likely was an unrecognized occupational exposure (route unknown) to Y. pestis, leading to septic shock. Y. pestis was isolated from premortem blood cultures. Polymerase chain reaction (PCR) identified the clinical isolate as a pgm- strain of Y. pestis. Postmortem examination revealed no evidence of pneumonic plague. A postmortem diagnosis of hereditary hemochromatosis was made on the basis of histopathologic, laboratory, and genetic testing. One possible explanation for the unexpected fatal outcome in this patient is that hemochromatosis-induced iron overload might have provided the infecting KIM D27 strain, which is attenuated as a result of defects in its ability to acquire iron, with sufficient iron to overcome its iron-acquisition defects and become virulent. Researchers should adhere to recommended biosafety practices when handling any live bacterial cultures, even attenuated strains, and institutional biosafety committees should implement and maintain effective surveillance systems to detect and monitor unexpected acute illness in laboratory workers.


Assuntos
Hemocromatose/complicações , Laboratórios , Exposição Ocupacional , Peste/etiologia , Yersinia pestis/isolamento & purificação , Chicago , Evolução Fatal , Hemocromatose/diagnóstico , Hemocromatose/genética , Humanos , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/etiologia , Masculino , Pessoa de Meia-Idade , Peste/complicações , Peste/diagnóstico , Reação em Cadeia da Polimerase , Virulência , Yersinia pestis/genética , Yersinia pestis/patogenicidade
11.
Adv Exp Med Biol ; 715: 1-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21557054

RESUMO

Bacteria of the Gram-negative genus Yersinia are environmentally ubiquitous. Three species are of medical importance: the intestinal pathogens Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The two former species, spread by contaminated food or water, cause a range of gastrointestinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from individuals suffering from pneumonic plague. Y. pestis is one of the most virulent of bacteria, and recent findings of antibiotic-resistant strains together with its potential use as a bioweapon have increased interest in the species. In addition to being significant pathogens in their own right, the yersiniae have been used as model systems for a number of aspects of pathogenicity. This chapter reviews the molecular mechanisms of adhesion in yersiniae. The enteropathogenic species share three adhesins: invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it binds to ß(1) integrins on microfold cells in the distal ileum, leading to the ingestion of the bacteria and allows them to cross the intestinal epithelium. YadA is the major adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells and extracellular matrix components, serum and phagocytosis resistance, and the ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance. Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These include the pH 6 antigen and autotransporter adhesins. Also the plasminogen activator of Y. pestis can mediate adherence to host cells. Although the adhesins of the pathogenic yersiniae have been studied extensively, their exact roles in the biology of infection remain elusive.


Assuntos
Adesinas Bacterianas/fisiologia , Yersinia/fisiologia , Yersinia/patogenicidade , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Humanos , Modelos Moleculares , Peste/etiologia , Peste/microbiologia , Conformação Proteica , Virulência/fisiologia , Fatores de Virulência/química , Fatores de Virulência/fisiologia , Yersinia/genética , Yersiniose/etiologia , Yersiniose/microbiologia , Infecções por Yersinia pseudotuberculosis/etiologia , Infecções por Yersinia pseudotuberculosis/microbiologia
12.
PLoS Negl Trop Dis ; 15(8): e0009558, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343197

RESUMO

On 12 November 2019, one couple from the Sonid Left Qi (County) in the Inner Mongolia Autonomous Region was diagnosed with pneumonic plague in Beijing. The wife acquired the infection from her husband. Thereafter, two bubonic plague cases were identified in Inner Mongolia on November 16th and 24th. In this study, genome-wide single nucleotide polymorphism (SNP) analysis was used to identify the phylogenetic relationship of Yersinia pestis strains isolated in Inner Mongolia. Strains isolated from reservoirs in 2018 and 2019 in Inner Mongolia, together with the strain isolated from Patient C, were further clustered into 2.MED3m, and two novel lineages (2.MED3q, 2.MED3r) in the 2.MED3 population. According to the analysis of PCR-based molecular subtyping methods, such as the MLVA 14 scheme and seven SNP allele sequencing, Patients A/B and D were classified as 2.MED3m. In addition, strains from rodents living near the patients' residences were clustered into the same lineage as patients. Such observations indicated that human plague cases originated from local reservoirs. Corresponding phylogenetic analysis also indicated that rodent plague strains in different areas in Inner Mongolia belong to different epizootics rather than being caused by spreading from the same epizootic in Meriones unguiculatus in 2019.


Assuntos
Peste/epidemiologia , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Adulto , Animais , Pequim/epidemiologia , China/epidemiologia , Evolução Fatal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Peste/etiologia , Roedores/microbiologia , Yersinia pestis/isolamento & purificação
13.
Medicine (Baltimore) ; 99(44): e22932, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126357

RESUMO

INTRODUCTION: Plague is an acute, often fulminating infectious disease caused by Yersinia Pestis transmitted by rodents. It is rarely encountered in clinics, although natural plague foci are widely distributed around the world. PATIENT CONCERNS: A couple who are cattle and sheep herdsmen from the Inner Mongolia Autonomous Region presented with cough, expectoration and fever. The husband developed sudden onset of fever and bloody sputum after working the soil on his farm. The wife also developed fever after nursing his husband. Both patients were preliminarily diagnosed with severe pneumonia, but antimicrobial treatments in the local hospital were unsuccessful. Their conditions deteriorated and they were transferred to our center. DIAGNOSIS: Preliminary etiological examinations were unremarkable, while blood and sputum specimens were found to be positive by RT-PCR and colloidal gold-immunochromatography assay targeting the F1 antigen and by reverse indirect hemagglutination assay. Pneumonic plague was confirmed. INTERVENTIONS: Both patients were transferred to special infectious disease hospital for further treatment. OUTCOMES: The condition of the female patient deteriorated. The male recovered after treatment, while the female patient finally died. CONCLUSION: There are 3 main forms of plague: bubonic, pneumonic and septicemic. Humans can be infected by the bites of bacterium-bearing fleas or direct contact of wild animals that died from plague. Human plague can be transmitted by close contact through coughing droplet. Neglected diagnosis of plague could cause severe consequences. Strict surveillance and protection measures should be taken and the public should be alerted about potential risks when epizootic plague is detected.


Assuntos
Peste/epidemiologia , Adulto , Pequim/epidemiologia , China/etnologia , Evolução Fatal , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Peste/diagnóstico por imagem , Peste/etiologia , Radiografia Torácica , Tomografia Computadorizada por Raios X , Yersinia pestis
15.
Int J Health Geogr ; 8: 38, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19558717

RESUMO

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. RESULTS: Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. CONCLUSION: Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions.


Assuntos
Demografia , Efeito Estufa , Modelos Estatísticos , Peste/epidemiologia , Animais , California/epidemiologia , Coiotes , Previsões , Humanos , Peste/etiologia , Sciuridae
16.
Risk Anal ; 28(5): 1327-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18564992

RESUMO

We create an influence diagram of how a plague bioattack could unfold and then use it to identify factors shaping infection risks in many possible scenarios. The influence diagram and associated explanations provide a compact reference that allows risk communicators to identify key messages for pre-event preparation and testing. It can also be used to answer specific questions in whatever unique situations arise, considering both the conditions of the attack and the properties of the attacked populations. The influence diagram allows a quick, visual check of the factors that must be covered when evaluating audience information needs. The documentation provides content for explaining the resultant advice. We show how these tools can help in preparing for crises and responding to them.


Assuntos
Bioterrorismo , Comunicação , Planejamento em Desastres , Peste/veterinária , Animais , Humanos , Disseminação de Informação , Peste/etiologia , Peste/fisiopatologia , Peste/transmissão , Saúde Pública , Medição de Risco , Comportamento de Redução do Risco , Zoonoses/etiologia , Zoonoses/transmissão
18.
Yale J Biol Med ; 81(1): 31-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18604309

RESUMO

Analyses of past disasters may supply insights to mitigate the impact of recurrences. In this context, we offer a unifying causative theory of Old Testament plagues, which has present day public health implications. We propose the root cause to have been an aberrant El Niño-Southern Oscillation teleconnection that brought unseasonable and progressive climate warming along the ancient Mediterranean littoral, including the coast of biblical Egypt, which, in turn, initiated the serial catastrophes of biblical sequence - in particular arthropod-borne and arthropod-caused diseases. Located beyond the boundary of focal climate change, inland Goshen would not have been similarly affected. Implicit in this analysis is a framework to consider a possibility of present day recurrence of similar catastrophes and their impact upon essential public services.


Assuntos
Clima , Desastres , Peste/história , Animais , Vetores Artrópodes , Causalidade , História do Século XX , Humanos , Peste/epidemiologia , Peste/etiologia
19.
Izv Akad Nauk Ser Biol ; (4): 389-95, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18773526

RESUMO

The ratio of macro- and microevolutionary processes is considered with reference to the ecological scenario of the origin of the plague pathogen and its subsequent natural and anthropogenic global expansion. The macroevolutionary transformation of the ancestral pseudotuberculosis microbe clone into the initial plague microbe Yersinia pestis tarbagani occurred in Central Asia at the end of the Late Pleistocene by a "vertical" Darwinian way in an inadaptive heterothermal continual intermediate environment--the Mongolian marmot Marmota sibirica-flea Oropsylla silantiewi system--via a sequence of unstable and currently extinct intermediate forms. Its natural geographic expansion on the "oil spot" principle in the postglacial time led to the microevolutionary formation of 20-30 hostal subspecies circulating in populations of the background species of burrowing rodents and pikas in arid areas of Eurasia. The intercontinental spread of the "marmot" and "rat" pathogen subspecies in the past few centuries has been exclusively anthropogenic, with the involvement of synanthropic (ship) rats.


Assuntos
Evolução Biológica , Filogenia , Peste/epidemiologia , Sifonápteros/microbiologia , Yersinia pestis/fisiologia , Animais , Insetos Vetores/microbiologia , Parasitos/microbiologia , Peste/etiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA