Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7857): 95-100, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953416

RESUMEN

The origin and evolution of hominin mortuary practices are topics of intense interest and debate1-3. Human burials dated to the Middle Stone Age (MSA) are exceedingly rare in Africa and unknown in East Africa1-6. Here we describe the partial skeleton of a roughly 2.5- to 3.0-year-old child dating to 78.3 ± 4.1 thousand years ago, which was recovered in the MSA layers of Panga ya Saidi (PYS), a cave site in the tropical upland coast of Kenya7,8. Recent excavations have revealed a pit feature containing a child in a flexed position. Geochemical, granulometric and micromorphological analyses of the burial pit content and encasing archaeological layers indicate that the pit was deliberately excavated. Taphonomical evidence, such as the strict articulation or good anatomical association of the skeletal elements and histological evidence of putrefaction, support the in-place decomposition of the fresh body. The presence of little or no displacement of the unstable joints during decomposition points to an interment in a filled space (grave earth), making the PYS finding the oldest known human burial in Africa. The morphological assessment of the partial skeleton is consistent with its assignment to Homo sapiens, although the preservation of some primitive features in the dentition supports increasing evidence for non-gradual assembly of modern traits during the emergence of our species. The PYS burial sheds light on how MSA populations interacted with the dead.


Asunto(s)
Entierro/historia , Fósiles , Esqueleto/anatomía & histología , Animales , Huesos/anatomía & histología , Preescolar , Evolución Cultural/historia , Dentición , Historia Antigua , Hominidae/anatomía & histología , Hominidae/clasificación , Humanos , Kenia
3.
Nature ; 580(7802): 235-238, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269345

RESUMEN

The phylogenetic relationships between hominins of the Early Pleistocene epoch in Eurasia, such as Homo antecessor, and hominins that appear later in the fossil record during the Middle Pleistocene epoch, such as Homo sapiens, are highly debated1-5. For the oldest remains, the molecular study of these relationships is hindered by the degradation of ancient DNA. However, recent research has demonstrated that the analysis of ancient proteins can address this challenge6-8. Here we present the dental enamel proteomes of H. antecessor from Atapuerca (Spain)9,10 and Homo erectus from Dmanisi (Georgia)1, two key fossil assemblages that have a central role in models of Pleistocene hominin morphology, dispersal and divergence. We provide evidence that H. antecessor is a close sister lineage to subsequent Middle and Late Pleistocene hominins, including modern humans, Neanderthals and Denisovans. This placement implies that the modern-like face of H. antecessor-that is, similar to that of modern humans-may have a considerably deep ancestry in the genus Homo, and that the cranial morphology of Neanderthals represents a derived form. By recovering AMELY-specific peptide sequences, we also conclude that the H. antecessor molar fragment from Atapuerca that we analysed belonged to a male individual. Finally, these H. antecessor and H. erectus fossils preserve evidence of enamel proteome phosphorylation and proteolytic digestion that occurred in vivo during tooth formation. Our results provide important insights into the evolutionary relationships between H. antecessor and other hominin groups, and pave the way for future studies using enamel proteomes to investigate hominin biology across the existence of the genus Homo.


Asunto(s)
Esmalte Dental/química , Esmalte Dental/metabolismo , Fósiles , Hominidae , Proteoma/análisis , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Georgia (República) , Humanos , Masculino , Diente Molar/química , Diente Molar/metabolismo , Hombre de Neandertal , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Filogenia , Proteoma/química , España
4.
J Hum Evol ; 174: 103291, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493597

RESUMEN

Since the discovery of a human mandible in 1887 near the present-day city of Banyoles, northeastern Spain, researchers have generally emphasized its archaic features, including the lack of chin structures, and suggested affinities with the Neandertals or European Middle Pleistocene (Chibanian) specimens. Uranium-series and electron spin resonance dating suggest the mandible dates to the Late Pleistocene (Tarantian), approximately ca. 45-66 ka. In this study, we reassessed the taxonomic affinities of the Banyoles mandible by comparing it to samples of Middle Pleistocene fossils from Africa and Europe, Neandertals, Early and Upper Paleolithic modern humans, and recent modern humans. We evaluated the frequencies and expressions of morphological features and performed a three-dimensional geometric morphometric analysis on a virtual reconstruction of Banyoles to capture overall mandibular shape. Our results revealed no derived Neandertal morphological features in Banyoles. While a principal component analysis based on Euclidean distances from the first two principal components clearly grouped Banyoles with both fossil and recent Homo sapiens individuals, an analysis of the Procrustes residuals demonstrated that Banyoles did not fit into any of the comparative groups. The lack of Neandertal features in Banyoles is surprising considering its Late Pleistocene age. A consideration of the Middle Pleistocene fossil record in Europe and southwest Asia suggests that Banyoles is unlikely to represent a late-surviving Middle Pleistocene population. The lack of chin structures also complicates an assignment to H. sapiens, although early fossil H. sapiens do show somewhat variable development of the chin structures. Thus, Banyoles represents a non-Neandertal Late Pleistocene European individual and highlights the continuing signal of diversity in the hominin fossil record. The present situation makes Banyoles a prime candidate for ancient DNA or proteomic analyses, which may shed additional light on its taxonomic affinities.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Humanos , España , Proteómica , Hominidae/anatomía & histología , Mandíbula/anatomía & histología , Hombre de Neandertal/anatomía & histología , Fósiles , Evolución Biológica
5.
J Hum Evol ; 174: 103280, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455404

RESUMEN

The bony labyrinth contains phylogenetic information that can be used to determine interspecific differences between fossil hominins. The present study conducted a comparative 3D geometric morphometric analysis on the bony labyrinth of the Middle Pleistocene Sima de los Huesos (SH) hominins. The findings of this study corroborate previous multivariate analyses of the SH hominin bony labyrinth. The analysis of the semicircular canals revealed the SH hominin canal morphologies appear closer to those of the Neandertals than to those of Homo sapiens. This is attributable to a Neandertal-like ovoid anterior canal, and mediolaterally expanded, circular posterior canal. However, the SH hominins lack the increased torsion in the anterior canal and the inferior orientation of the lateral canal seen in Neandertals. The results of the cochlear analysis indicated that, although there is some overlap, there are notable differences between the SH hominins and the Neandertals. In particular, the SH hominin cochlea appears more constricted than in Neandertals in the first and second turns. A principal component analysis of the full bony labyrinth separated most SH hominins from the Neandertals, which largely clustered with modern humans. A covariance ratio analysis found a significant degree of modularity within the bony labyrinth of all three groups, with the SH hominins and Neandertals displaying the highest modularity. This modular signal in the bony labyrinth may be attributable to different selective pressures related to locomotion and audition. Overall, the results of this study confirm previous suggestions that the semicircular canals in the SH hominins are somewhat derived toward Neandertals, while their cochlea is largely primitive within the genus Homo.


Asunto(s)
Oído Interno , Hominidae , Hombre de Neandertal , Animales , Humanos , Filogenia , Cóclea , Fósiles
6.
J Anat ; 240(2): 339-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611899

RESUMEN

The two- and three-dimensional assessment of dental tissues has become routine in human taxonomic studies throughout the years. Nonetheless, most of our knowledge of the variability of the enamel and dentine dimensions of the human evolutionary lineage comes from the study of permanent dentition, and particularly from molars. This leads to a biased view of the variability of these features. Due to their early formation and rapid development, the deciduous teeth allow more simplified inferences regarding the processes involved in the dental tissue development of each group. Therefore, their study could be very valuable in dental palaeohistology. In this research, we have explored the dental tissue proportions of the deciduous canines belonging to some human samples of the Early and Middle Pleistocene. The purpose of this was to discuss the meaning of the similarities and differences observed in their histological pattern, as well as to evaluate the degree of covariance with that observed in the permanent dentition of these populations. Our results show that, although there are some similarities in the dental tissue proportions between the deciduous and permanent canines of the study samples, the two dental classes do not provide a similar or comparable pictures of the dental tissue pattern present in the dentition of fossil hominins. Future works on the dental tissue patterns of the anterior and posterior dentition, including deciduous teeth, of fossil samples, may help to shed light on this hypothesis.


Asunto(s)
Hominidae , Diente , Animales , Evolución Biológica , Fósiles , Humanos , Diente Molar , Diente Primario
7.
J Hum Evol ; 172: 103253, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162354

RESUMEN

The early Middle Pleistocene human material from Boxgrove (West Sussex, UK) consists of a partial left tibia and two lower incisors from a separate adult individual. These remains derive from deposits assigned to the MIS 13 interglacial at about 480 ka and have been referred to as Homo cf. heidelbergensis. The much larger skeletal sample from the Sima de los Huesos (Atapuerca, Spain) is dated to the succeeding MIS 12, at about 430 ka. This fossil material has previously been assigned to Homo heidelbergensis but is now placed within the Neanderthal clade. Because of the scarcity of human remains from the Middle Pleistocene and their morphological variability, this study assessed whether the Boxgrove specimens fit within the morphological variability of the homogeneous Sima de los Huesos population. Based on morphometric analyses performed against 22 lower incisors from Sima de los Huesos and published material, the data from the Boxgrove incisors place them comfortably within the range of Sima de los Huesos. Both assemblages present robust incisors distinct from the overall small recent Homo sapiens incisors, and Boxgrove also aligns closely with Homo neanderthalensis and some other European Middle Pleistocene hominins. Following morphological and cross-sectional analyses of the Boxgrove tibia compared to seven adult Sima de los Huesos specimens and a set of comparative tibiae, Boxgrove is shown to be similar to Sima de los Huesos and Neanderthals in having thick cortices and bone walls, but in contrast resembles modern humans in having a straight anterior tibial crest and a suggestion of a lateral concavity. Based on the patterns observed, there is no justification for assigning the Boxgrove and Sima de los Huesos incisors to distinct paleodemes, but the tibial data show greater contrasts and suggest that all three of these samples are unlikely to represent the same paleodeme.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Adulto , Humanos , Fósiles , Estudios Transversales , Hominidae/anatomía & histología , Hombre de Neandertal/anatomía & histología , Tibia/anatomía & histología , España
8.
Nature ; 531(7595): 504-7, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26976447

RESUMEN

A unique assemblage of 28 hominin individuals, found in Sima de los Huesos in the Sierra de Atapuerca in Spain, has recently been dated to approximately 430,000 years ago. An interesting question is how these Middle Pleistocene hominins were related to those who lived in the Late Pleistocene epoch, in particular to Neanderthals in western Eurasia and to Denisovans, a sister group of Neanderthals so far known only from southern Siberia. While the Sima de los Huesos hominins share some derived morphological features with Neanderthals, the mitochondrial genome retrieved from one individual from Sima de los Huesos is more closely related to the mitochondrial DNA of Denisovans than to that of Neanderthals. However, since the mitochondrial DNA does not reveal the full picture of relationships among populations, we have investigated DNA preservation in several individuals found at Sima de los Huesos. Here we recover nuclear DNA sequences from two specimens, which show that the Sima de los Huesos hominins were related to Neanderthals rather than to Denisovans, indicating that the population divergence between Neanderthals and Denisovans predates 430,000 years ago. A mitochondrial DNA recovered from one of the specimens shares the previously described relationship to Denisovan mitochondrial DNAs, suggesting, among other possibilities, that the mitochondrial DNA gene pool of Neanderthals turned over later in their history.


Asunto(s)
Hominidae/genética , Filogenia , Alelos , Animales , ADN Mitocondrial/genética , Fósiles , Genoma Mitocondrial/genética , Hominidae/clasificación , Masculino , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Alineación de Secuencia , España
9.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26595274

RESUMEN

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Asunto(s)
Genoma Humano/genética , Selección Genética/genética , Agricultura/historia , Asia/etnología , Estatura/genética , Huesos , ADN/genética , ADN/aislamiento & purificación , Dieta/historia , Europa (Continente)/etnología , Genética de Población , Haplotipos/genética , Historia Antigua , Humanos , Inmunidad/genética , Masculino , Herencia Multifactorial/genética , Pigmentación/genética , Análisis de Secuencia de ADN
10.
Proc Natl Acad Sci U S A ; 115(13): 3428-3433, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531053

RESUMEN

Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500-3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up.


Asunto(s)
ADN/análisis , Agricultores/historia , Genética de Población , Genoma Humano , Genómica/métodos , Migración Humana/historia , Arqueología , ADN/genética , Europa (Continente) , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos
11.
J Hum Evol ; 144: 102793, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32442650

RESUMEN

Sexual dimorphism is an important component of the total variation seen in populations and plays a key role in taxonomic debates. In this study, microtomographic (microcomputed tomography) techniques were applied to a sample of hominin teeth from the Sima de los Huesos site (Spain). Dental tissue proportions of the permanent canines were assessed to characterize the pattern and degree of sexual dimorphism within this population. In addition, the possible similarities and differences with the Homo neanderthalensis remains from Krapina (Croatia) and with a recent modern human sample were evaluated. A combination of classical statistical approaches with more novel techniques allowed us not only to ratify the sex allocation of the individuals previously assigned in the literature but also to estimate the sex of the youngest individuals, which were not assessed in previous studies. Likewise, the sexes of certain extensively worn canines and isolated pieces were estimated. As a result, the sex ratio observed in our dental sample from the Sima de los Huesos population is 5:9 (Nm:Nf). In general terms, both Sima de los Huesos and Krapina dental samples have a degree of sexual dimorphism in their permanent canine tissue proportions that does not surpass that of modern humans. The marked dimorphic root volume of Sima de los Huesos mandibular canines is the exception, which surpasses the modern human mean, although it falls within the 95% confidence interval. Therefore, our results do not support that dental tissue proportions of the European Middle Pleistocene populations were more dimorphic than in modern humans. However, the differences in canine tissue proportions are great enough to allow sex estimation with a high degree of confidence.


Asunto(s)
Diente Canino/anatomía & histología , Esmalte Dental/anatomía & histología , Dentina/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Caracteres Sexuales , España
12.
Nature ; 505(7483): 403-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24305051

RESUMEN

Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.


Asunto(s)
Fósiles , Genoma Mitocondrial/genética , Hominidae/clasificación , Hominidae/genética , Filogenia , Animales , Teorema de Bayes , Secuencia de Consenso/genética , Citosina/metabolismo , ADN Mitocondrial/genética , Desaminación , Fémur/anatomía & histología , Fémur/metabolismo , Hominidae/anatomía & histología , Datos de Secuencia Molecular , Hombre de Neandertal/genética , España
13.
Am J Phys Anthropol ; 171(4): 733-741, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31943140

RESUMEN

OBJECTIVES: Here we describe the case of an ectopic maxillary third molar (M3 ), preventing the eruption of the M2 , in the individual H3 of the hominin hypodigm of level TD6.2 of the Early Pleistocene site of Gran Dolina (Sierra de Atapuerca, Spain). MATERIALS AND METHODS: The fossil remains from the TD6.2 level of the Gran Dolina site (about 170 specimens) are assigned to Homo antecessor. Different geochronological methods place these hominins in the oxygen isotopic stage 21, between 0.8 and 0.85 million years ago (Ma). The immature individual H3 is represented by an almost complete midface (ATD6-69), preserving various teeth in situ. We used high-resolution microtomograhy (mCT) to investigate the abnormal position of the left M3 , virtually reconstruct M2 , and M3 as well as assessing the development stage of these. Finally, we compare this case with extinct and extant populations. RESULTS: Based on the identified signs, we suggest that individual H3 suffered from a unilateral impaction of the M2 as a result of the ectopic position of the developing M3 . DISCUSSION: We conclude that the most likely etiology for the ectopic position of the M3 is the lack of space in the maxilla. We discuss possible contributing factors, such as morphometric aspects of the maxilla and the early mineralization of the M3 , to support the M2 impaction. Finally, due to the early age at death of this individual we did not identify any secondary lesion associated with the M2 impaction.


Asunto(s)
Hominidae , Maxilar/patología , Diente Molar/patología , Erupción Ectópica de Dientes/veterinaria , Animales , Diente Molar/fisiología , España , Erupción Ectópica de Dientes/patología
14.
Proc Natl Acad Sci U S A ; 114(13): 3397-3402, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289213

RESUMEN

The Middle Pleistocene is a crucial time period for studying human evolution in Europe, because it marks the appearance of both fossil hominins ancestral to the later Neandertals and the Acheulean technology. Nevertheless, European sites containing well-dated human remains associated with an Acheulean toolkit remain scarce. The earliest European hominin crania associated with Acheulean handaxes are at the sites of Arago, Atapuerca Sima de los Huesos (SH), and Swanscombe, dating to 400-500 ka (Marine Isotope Stage 11-12). The Atapuerca (SH) fossils and the Swanscombe cranium belong to the Neandertal clade, whereas the Arago hominins have been attributed to an incipient stage of Neandertal evolution, to Homo heidelbergensis, or to a subspecies of Homo erectus A recently discovered cranium (Aroeira 3) from the Gruta da Aroeira (Almonda karst system, Portugal) dating to 390-436 ka provides important evidence on the earliest European Acheulean-bearing hominins. This cranium is represented by most of the right half of a calvarium (with the exception of the missing occipital bone) and a fragmentary right maxilla preserving part of the nasal floor and two fragmentary molars. The combination of traits in the Aroeira 3 cranium augments the previously documented diversity in the European Middle Pleistocene fossil record.


Asunto(s)
Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Fósiles/anatomía & histología , Hominidae/genética , Humanos , Paleontología , Portugal
15.
J Hum Evol ; 129: 67-90, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30904042

RESUMEN

The Sima de los Huesos (SH) endocranial sample includes 16 complete or partial endocasts corresponding to European Middle Pleistocene hominins. Different anatomical and molecular studies have demonstrated that these hominins are phylogenetically related to Neanderthals, thus making them the earliest unquestionable representatives of the Neanderthal lineage. The description of endocranial variation in this population is fundamental to shedding light on the evolution of the Neanderthal brain. In this contribution, we analyze and describe endocranial variation in this sample, including aspects related to brain size (endocranial volume and encephalization) and brain organization (through qualitative descriptions and quantitative analyses). Our results indicate that the SH hominins show a transitional state between a primitive hominin endocranial configuration (which is found in Homo erectus and non-SH Middle Pleistocene Homo) and the derived configurations found in Neanderthals and modern humans, without a clear anticipation of classic Neanderthal endocranial traits. In comparison with other cranial and postcranial traits that show a fully Neanderthal or clear pre-Neanderthal condition in the SH collection, endocranial variation in these hominins is surprisingly primitive and shows no Neanderthal affinity. These results and the comparison with other cranial traits confirm that Neanderthals evolved in a mosaic fashion. Traits related to mastication (dental, facial and mandibular anatomy) led the Neanderthalization process, whereas neurocranial anatomy must have acquired a fully Neanderthal condition considerably later.


Asunto(s)
Encéfalo/anatomía & histología , Hombre de Neandertal/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Tamaño de los Órganos
16.
J Hum Evol ; 131: 76-95, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182208

RESUMEN

Recent chronological studies of the Sima de los Huesos (SH) hominin fossil site, Atapuerca, Spain, have established a close minimum age of at least 430 ka for sedimentary material immediately overlying the human remains. However, a firm maximum age limit still needs to be established for the SH fossils in order to better constrain the timing for the onset of Neandertal speciation. In the present study, we address this important chronological gap at SH by providing direct ages for the sediment deposits that host, and immediately underlie, the hominin fossils. Depositional ages were obtained using single-grain thermally-transferred optically stimulated luminescence (TT-OSL), a technique that has yielded reliable 'extended-range' luminescence chronologies at several independently dated Atapuerca sites. Four single-grain TT-OSL depositional ages of 453 ± 56 ka, 437 ± 38 ka, 457 ± 41 ka and 460 ± 39 ka were obtained for the red clay lithostratigraphic units (LU-5 and LU-6) found underlying and encasing the SH hominin bones. A Bayesian age-depth model was constructed using previously published chronologies, as well as the new single-grain TT-OSL ages for LU-5 and LU-6, in order to derive combined age estimates for individual lithostratigraphic units preserved at SH. The combined modeled ranges reveal that the hominin-bearing layer (LU-6) was deposited between 455 ± 17 ka and 440 ± 15 ka (mean lower and upper boundary 68.2% probability range ± 1σ uncertainty, respectively), with a mean age of 448 ± 15 ka. These new bracketing ages suggest that the hominin fossils at SH were most likely deposited within Marine Isotope Stage (MIS) 12, enabling more precise temporal constraint on the early evolution of the Neandertal lineage. The SH fossils represent the oldest reliably dated hominin remains displaying Neandertal features across Eurasia. These Neandertal features are first observed in the facial skeleton, including the mandible and teeth, as well as the temporomandibular joint, and appear consistently across the SH collection. Our chronological findings suggest that the appearance of these Neandertal traits may have been associated with the climatic demise of MIS 12 and the ecological changes that occurred in Iberia during this period. Other Middle Pleistocene hominin fossils from Europe dated to MIS 12-11, or later, show different morphological trends, with some lacking Neandertal specializations. The latest SH dating results enable improved temporal correlations with these contrasting hominin records from Europe, and suggest a complex picture for hominin evolution during the Middle Pleistocene.


Asunto(s)
Arqueología , Fósiles , Hominidae , Animales , Luminiscencia , Paleontología , España
17.
J Hum Evol ; 136: 102641, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31569005

RESUMEN

The cochlea contains taxonomic and phylogenetic information and its morphology is related with hearing abilities among fossil hominins. Data for the genus Homo is presently limited to early Homo and the early Neandertals from Krapina. The present study of the middle Pleistocene hominins from the Sima de los Huesos (SH) provides new evidence on cochlear evolution in the genus Homo. We compared the absolute length, proportional lengths of each turn, number of turns, size and shape of the cross-section of the basal turn, volume, curvature gradient, and thickness of the cochlea between extant Pan troglodytes, extant Homo sapiens, Homo neanderthalensis and the SH hominins. The SH hominins resemble P. troglodytes in the proportionally long basal turn, the small size and round shape of the cross-section of the basal turn, the small cochlear volume and the low cochlear thickness. The SH hominins resemble Neandertals and H. sapiens in their long cochlear length and in the proportionally short third turn. Homo neanderthalensis and H. sapiens share several features, not present in the SH hominins, and that likely represent homoplasies: a larger volume, larger size and oval shape of the cross-section of the basal turn and higher cochlear thickness. Later Neandertals show a derived proportionally shorter apical turn. Changes in cochlear volume in Homo cannot be fully explained by variation in body mass or cochlear length but are more directly related to changes in the cross-sectional area of the basal turn. Based on previous studies of the outer and middle ear in SH hominins, changes in the outer and middle ear preceded changes in the inner ear, and the cochlea and semicircular canals seem to have evolved independently in the Neandertal clade. Finally, the small cochlear volume in the SH hominins suggests a slightly higher upper limit of hearing compared with modern humans.


Asunto(s)
Evolución Biológica , Cóclea/anatomía & histología , Fósiles/anatomía & histología , Hombre de Neandertal/anatomía & histología , Animales , Hominidae/anatomía & histología , España
18.
J Hum Evol ; 135: 102663, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31521027

RESUMEN

Pathological conditions have been previously documented in the Middle Pleistocene Sima de los Huesos hominins from northern Spain, and several of these have clear behavioral implications. Within this fossil assemblage, Cranium 4 shows bilateral external auditory exostoses which have been preliminarily interpreted as causing a significant hearing loss in this individual. If confirmed, this would be the oldest recorded case of deafness in human history and could have important implications for the antiquity of this condition, as well as social interactions. To further investigate this case, the current study presents 3D reconstructions of the entire outer and middle ear, based on computed tomography scans of both temporal bones in Cranium 4. We established the degree of stenosis in both external auditory canals, showing that in both cases the degree of stenosis is less than 52% of the original cross-sectional area of each canal. Based on clinical studies in living humans, the buildup of wax due to the degree of stenosis in Cranium 4 is unlikely to have caused frequent external ear infections. In addition, we estimated the pattern of sound power transmission up to 5 kHz in both ears relying on a comprehensive model developed in the bioengineering literature and which has been applied previously to the Sima de los Huesos hominins. The model was modified to account for the peculiar shape of the pathological external ear canals in Cranium 4. The results show that this pathology had little to no influence on the sound power transmission in this individual. Thus, we conclude that the exostoses present in both ears of Cranium 4 did not significantly affect their hearing.


Asunto(s)
Pérdida Auditiva/patología , Hombre de Neandertal , Animales , Hominidae , Masculino , España
19.
Am J Phys Anthropol ; 168(1): 222-228, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30351468

RESUMEN

OBJECTIVES: The Galería de las Estatuas site (GE), a new Mousterian site at the Sierra de Atapuerca site complex (Spain), has revealed a Late Pleistocene detrital sequence with at least five lithostratigraphic units. These units have yielded evidence of Mousterian occupations with sporadic carnivore activity, and have provided datings of 80-112 ka BP using single-grain optically stimulated luminescence. This places the sequence at the end of MIS5 and beginning of the MIS4. We described here a complete adult human distal foot phalanx (GE-1573) recovered during the 2017 field season in the interface between lithostratigraphic units 3 and 4 (107-112 ka BP) in the GE-I test pit. MATERIALS AND METHOD: This phalanx (GE-1573) probably corresponds to the fifth toe from the right side due to the medial deviation of the distal tuberosity. We compared the metric variables of this phalanx to several fossil and recent Homo samples. RESULTS: Neandertals display foot phalanges that are broader and more robust than those of recent humans. Despite the scarcity of well-identified distal phalanges in the Homo fossil record, the GE-1573 phalanx is broad, long and robust when compared with recent and Upper Paleolithic modern humans. DISCUSSION: These traits, which align the GE-1573 foot phalanx with the Neandertal morphology, are consistent with the stratigraphic context, likely corresponding to one of the oldest Late Neandertals found inland on the Iberian Peninsula. Additionally, it provides the first evidence of a Neandertal human fossil in a stratigraphic context in the Sierra de Atapuerca.


Asunto(s)
Hombre de Neandertal/anatomía & histología , Falanges de los Dedos del Pie/anatomía & histología , Animales , Antropología Física , Antropometría , Fósiles , España
20.
J Anat ; 233(6): 740-754, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30280382

RESUMEN

Body mass estimation in fossil human species is a crucial topic in paleoanthropology as it yields information about ecologically relevant characteristics. Nevertheless, variables crucial to body mass estimation such as bone volume and skeletal weight have never before been calculated in a fossil human species. The exceptional state of preservation of several fossil human long bones from the Sima de los Huesos (SH) Middle Pleistocene site, in the Sierra de Atapuerca, makes it possible to calculate for the first time the absolute bone volume in five complete long bones (two femora and three humeri) of a fossil human species, an approach not possible in fragmentary or poorly preserved fossils. We have relied on computed tomography scans and 3D reconstructions to calculate bone volume. A sample of 62 complete bones of robust recent humans was also used for comparative purposes. The male SH femora (weight-bearing bones) and humeri (non-weight-bearing bones) have, relative to their size, greater bone volume (volume of bone tissue over total bone volume) than the equivalent bones in our recent human sample. As mass is volume × density, and bone tissue density (as a material) is similar across mammals, we calculate bone mass, and our results show that the SH hominins had on average heavier long bones than extant humans of the same size. From the femoral weight at hand, we have estimated the total skeletal weight in two SH individuals, which is about 36% heavier than in the recent humans of the equivalent body size. Using different methods and skeletal variables, including skeletal weight, to estimate body mass in these two SH humans, we highlight the considerable differences in body mass estimates we obtained, and that the largest body mass estimate is the one based on the skeletal weight. Our results suggest that we cannot assume the same relative proportion of bone volume and bone and skeletal weight characterized the entire genus Homo. Given that skeletal weight has a significant influence on body mass, current body mass estimates of fossil Homo specimens could be systematically underestimated. Thus, the significantly larger bone volume and heavier bones, probably throughout the entire skeleton, of SH humans could have had consequences for many biological parameters in this Pleistocene population and considerable importance for studies focusing on adaptive and ecologically relevant characteristics. Although more recent human samples should be analyzed, in our view, the high skeletal robusticity of the SH sample, including larger bone volume and skeletal weight, is part of their adaptive body type selected for throughout the Pleistocene to support different mechanical and activity regimes and formed under tight genetic control, including control over bone formative and regulatory processes.


Asunto(s)
Huesos/anatomía & histología , Fósiles/anatomía & histología , Tamaño Corporal , Peso Corporal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA