Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075751

RESUMEN

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Asunto(s)
Anomalías Craneofaciales , Disostosis Mandibulofacial , Humanos , Ratones , Animales , Disostosis Mandibulofacial/genética , Apoptosis , Mutagénesis , Ribosomas/genética , Fenotipo , Cresta Neural/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología
2.
Am J Hum Genet ; 108(1): 115-133, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33308444

RESUMEN

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.


Asunto(s)
Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Discapacidades del Desarrollo/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
3.
J Hum Genet ; 69(3-4): 163-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228874

RESUMEN

The gene for ATP binding cassette subfamily A member 2 (ABCA2) is located at chromosome 9q34.3. Biallelic ABCA2 variants lead to intellectual developmental disorder with poor growth and with or without seizures or ataxia (IDPOGSA). In this study, we identified novel compound heterozygous ABCA2 variants (NM_001606.5:c.[5300-17C>A];[6379C>T]) by whole exome sequencing in a 28-year-old Korean female patient with intellectual disability. These variants included intronic and nonsense variants of paternal and maternal origin, respectively, and are absent from gnomAD. SpliceAI predicted that the intron variant creates a cryptic acceptor site. Reverse transcription-PCR using RNA extracted from a lymphoblastoid cell line of the patient confirmed two aberrant transcripts. Her clinical features are compatible with those of IDPOGSA.


Asunto(s)
Discapacidad Intelectual , Humanos , Femenino , Adulto , Discapacidad Intelectual/genética , Mutación , Familia , Síndrome , Ataxia/genética
4.
Am J Med Genet A ; 194(6): e63544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258498

RESUMEN

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Asunto(s)
Pruebas Genéticas , Unidades de Cuidado Intensivo Neonatal , Secuenciación Completa del Genoma , Humanos , Brasil/epidemiología , Recién Nacido , Masculino , Femenino , Pruebas Genéticas/métodos , Proyectos Piloto , Lactante , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética
5.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924610

RESUMEN

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

6.
J Med Genet ; 60(11): 1127-1132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37055165

RESUMEN

Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.

7.
Clin Genet ; 103(4): 383-391, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36645289

RESUMEN

The SUZ12 gene encodes a subunit of polycomb repressive complex 2 (PRC2) that is essential for development by silencing the expression of multiple genes. Germline heterozygous variants in SUZ12 have been found in Imagawa-Matsumoto syndrome (IMMAS) characterized by overgrowth and multiple dysmorphic features. Similarly, both EZH2 and EED also encode a subunit of PRC2 each and their pathogenic variants cause Weaver syndrome and Cohen-Gibson syndrome, respectively. Clinical manifestations of these syndromes significantly overlap, although their different prevalence rates have recently been noted: generalized overgrowth, intellectual disability, scoliosis, and excessive loose skin appear to be less prevalent in IMMAS than in the other two syndromes. We could not determine any apparent genotype-phenotype correlation in IMMAS. The phenotype of neurofibromatosis type 1 arising from NF1 deletion was also shown to be modified by the deletion of SUZ12, 560 kb away. This review deepens our understanding of the clinical and genetic characteristics of IMMAS together with other overgrowth syndromes related to PRC2. We also report on a novel IMMAS patient carrying a splicing variant (c.1023+1G>C) in SUZ12. This patient had a milder phenotype than other previously reported IMMAS cases, with no macrocephaly or overgrowth phenotypes, highlighting the clinical variation in IMMAS.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Discapacidad Intelectual , Humanos , Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Fenotipo , Complejo Represivo Polycomb 2/genética
8.
Am J Med Genet A ; 191(5): 1164-1209, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36779427

RESUMEN

The "Nosology of genetic skeletal disorders" has undergone its 11th revision and now contains 771 entries associated with 552 genes reflecting advances in molecular delineation of new disorders thanks to advances in DNA sequencing technology. The most significant change as compared to previous versions is the adoption of the dyadic naming system, systematically associating a phenotypic entity with the gene it arises from. We consider this a significant step forward as dyadic naming is more informative and less prone to errors than the traditional use of list numberings and eponyms. Despite the adoption of dyadic naming, efforts have been made to maintain strong ties to the MIM catalog and its historical data. As with the previous versions, the list of disorders and genes in the Nosology may be useful in considering the differential diagnosis in the clinic, directing bioinformatic analysis of next-generation sequencing results, and providing a basis for novel advances in biology and medicine.

9.
J Med Genet ; 59(2): 165-169, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436522

RESUMEN

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Asunto(s)
Craneosinostosis/genética , Proteínas de Homeodominio/genética , Animales , Preescolar , Estudios de Cohortes , Suturas Craneales/embriología , Suturas Craneales/patología , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Proteínas de Homeodominio/fisiología , Humanos , Lactante , Ratones , Linaje , Fenotipo , RNA-Seq , Secuenciación Completa del Genoma
10.
Genomics ; 114(5): 110468, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36041635

RESUMEN

Recent studies suggest that transcript isoforms significantly overlap (approximately 60%) between brain tissue and Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs). Interestingly, 14 cohesion-related genes with variants that cause Cornelia de Lange Syndrome (CdLS) are highly expressed in the brain and LCLs. In this context, we first performed RNA sequencing of LCLs from 22 solved (with pathogenic variants) and 19 unsolved (with no confirmed variants) CdLS cases. Next, an RNA sequencing pipeline was developed using solved cases with two different methods: short variant analysis (for single-nucleotide and indel variants) and aberrant splicing detection analysis. Then, 19 unsolved cases were subsequently applied to our pipeline, and four pathogenic variants in NIPBL (one inframe deletion and three intronic variants) were newly identified. Two of three intronic variants were located at Alu elements in deep-intronic regions, creating cryptic exons. RNA sequencing with LCLs was useful for identifying hidden variants in exome-negative cases.


Asunto(s)
Síndrome de Cornelia de Lange , Infecciones por Virus de Epstein-Barr , Proteínas de Ciclo Celular/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Herpesvirus Humano 4/genética , Humanos , Nucleótidos , Fenotipo , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN
11.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344616

RESUMEN

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Asunto(s)
Anomalías Craneofaciales , Enanismo , Deformidades Congénitas de las Extremidades , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Anomalías Urogenitales , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo/diagnóstico , Enanismo/genética , Genes Recesivos , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética
12.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564437

RESUMEN

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Asunto(s)
Chaperonas Moleculares/genética , Mutación , Osteogénesis Imperfecta/genética , Animales , Femenino , Genes Recesivos , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Linaje , Fenotipo , Vía de Señalización Wnt
13.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982609

RESUMEN

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Asunto(s)
Encéfalo/anomalías , Leucoencefalopatías/etiología , Mutación , Osteocondrodisplasias/etiología , Osteosclerosis/etiología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Preescolar , Femenino , Humanos , Leucoencefalopatías/patología , Masculino , Ratones , Ratones Noqueados , Osteocondrodisplasias/patología , Osteosclerosis/patología , Fenotipo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Adulto Joven
14.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773277

RESUMEN

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Asunto(s)
Inestabilidad Cromosómica , Daño del ADN , Variación Genética , Anomalías Musculoesqueléticas/patología , FN-kappa B/genética , Osteocondrodisplasias/patología , Adolescente , Adulto , Alelos , Animales , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Asociación Genética , Humanos , Ratones , Ratones Noqueados , Anomalías Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Secuenciación del Exoma , Adulto Joven , Pez Cebra
15.
Am J Med Genet A ; 188(2): 676-682, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713566

RESUMEN

Williams-Beuren syndrome (WBS) is a rare, microdeletion syndrome characterized by facial dysmorphisms, intellectual disability, a friendly personality, cardiovascular and other abnormalities. Cardiovascular defects (CVD) are among the most prevalent characteristics in WBS, being supravalvular aortic stenosis (SVAS) the most frequent, followed by peripheral pulmonary stenosis (PPS). A comprehensive retrospective review of medical records of 127 patients with molecular diagnosis of WBS, in a period of 20 years, was done to evaluate the incidence, the natural history of cardiovascular disease, and the need for surgical intervention, including heart transplantation (HT). A total of 94/127 patients presented with CVD. Of these 94 patients, 50% presented with SVAS and 22.3% needed heart surgery and/or cardiac catheterization including one that required HT due to severe SVAS-related heart failure at 19 years of age. The patient died in the postoperative period due to infectious complications. Cardiovascular problems are the major cause of sudden death in patients with WBS, who have a significantly higher mortality risk associated with surgical interventions. There is a higher risk for anesthesia-related adverse events and for major adverse cardiac events following surgery. End-stage heart failure due to myocardial ischemia has been described in WBS patients and it is important to consider that HT can become their only viable option. To our knowledge, the case mentioned here is the first HT reported in an adolescent with WBS. HT can be a viable therapeutic option in WBS patients with adequate evaluation, planning, and a multidisciplinary team to provide the required perioperative care and follow-up.


Asunto(s)
Estenosis Aórtica Supravalvular , Insuficiencia Cardíaca , Trasplante de Corazón , Síndrome de Williams , Adolescente , Estenosis Aórtica Supravalvular/diagnóstico , Estenosis Aórtica Supravalvular/epidemiología , Estenosis Aórtica Supravalvular/genética , Insuficiencia Cardíaca/complicaciones , Humanos , Estudios Retrospectivos , Síndrome de Williams/complicaciones , Síndrome de Williams/diagnóstico , Síndrome de Williams/genética
16.
Am J Med Genet A ; 188(5): 1545-1549, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35019224

RESUMEN

Osteogenesis imperfecta (OI) is a rare low-bone mass skeletal Mendelian disorder characterized by bone fragility leading to bone fractures, with deformities and stunted growth in the more severe phenotypes. Other common, nonskeletal findings include blue sclerae and dentinogenesis imperfecta. It is caused mainly by quantitative or structural defects in type I collagen, although dysregulation of different signaling pathways that play a role in bone morphogenesis has been described to be associated with a small fraction of individuals with OI. Recently, a homozygous variant in the translation start site of CCDC134, showing increased activation of the RAS/MAPK signaling pathway, has been reported in three families of Moroccan origin with a severe, deforming form of OI. We report on a 9-year-old Brazilian boy, harboring the same homozygous variant in CCDC134, also presenting severe bone involvement. This report contributes to the phenotypic delineation of this novel autosomal recessive form of OI, which presents with high prevalence of nonunion fractures considered rare events in OI in general. In addition, it expands the phenotype to include base skull anomalies, potentially leading to serious complications, as seen in severe forms of OI. A poor response to bisphosphonate therapy was observed in these individuals. As the variant in CCDC134 leads to dysregulation of the RAS/MAPK signaling pathway, drugs targeted to this pathway could be an alternative to achieve a better management of these individuals.


Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Huesos , Colágeno Tipo I/genética , Fracturas Óseas/complicaciones , Homocigoto , Humanos , Proteínas de la Membrana/genética , Osteogénesis Imperfecta/complicaciones , Fenotipo
17.
BMC Pediatr ; 22(1): 492, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986266

RESUMEN

BACKGROUND: Achondroplasia is the most common bone dysplasia associated with disproportionate short stature, and other comorbidities, such as foramen magnum stenosis, thoracolumbar kyphosis, lumbar hyperlordosis, genu varum and spinal compression. Additionally, patients affected with this condition have higher frequency of sleep disorders, ear infections, hearing loss and slowed development milestones. Considering these clinical features, we aimed to summarize the regional experts' recommendations for the multidisciplinary management of patients with achondroplasia in Latin America, a vast geographic territory with multicultural characteristics and with socio-economical differences of developing countries. METHODS: Latin American experts (from Argentina, Brazil, Chile and Colombia) particiáted of an Advisory Board meeting (October 2019), and had a structured discussion how patients with achondroplasia are followed in their healthcare centers and punctuated gaps and opportunities for regional improvement in the management of achondroplasia. RESULTS: Practical recommendations have been established for genetic counselling, prenatal diagnosis and planning of delivery in patients with achondroplasia. An outline of strategies was added as follow-up guidelines to specialists according to patient developmental phases, amongst them neurologic, orthopedic, otorhinolaryngologic, nutritional and anthropometric aspects, and related to development milestones. Additionally, the role of physical therapy, physical activity, phonoaudiology and other care related to the quality of life of patients and their families were discussed. Preoperative recommendations to patients with achondroplasia were also included. CONCLUSIONS: This study summarized the main expert recommendations for the health care professionals management of achondroplasia in Latin America, reinforcing that achondroplasia-associated comorbidities are not limited to orthopedic concerns.


Asunto(s)
Acondroplasia , Cifosis , Acondroplasia/diagnóstico , Acondroplasia/genética , Acondroplasia/terapia , Niño , Femenino , Asesoramiento Genético , Humanos , América Latina/epidemiología , Calidad de Vida
18.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613725

RESUMEN

The goal of this study was to perform a clinical and molecular investigation in an eight-year-old female child diagnosed with hypophosphatasia (HPP). The proband and her family were evaluated by medical and dental histories, biochemical analyses, radiographic imaging, and genetic analysis of the tissue-nonspecific alkaline phosphatase (ALPL) gene. A bioinformatic analysis was performed to predict the structural and functional impact of the point mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) molecule and to define their potential contribution to the phenotype. We identified a novel combination of heterozygous ALPL missense variants in the proband, p.Ala33Val and p.Asn47His, compatible with an autosomal recessive mode of inheritance and resulting in skeletal and dental phenotypes. Computational modeling showed that the affected Asn47 residue is located in the coil structure close to the N-terminal α-helix, whereas the affected Ala33 residue is localized in the N-terminal α-helix. Both affected residues are located close to the homodimer interface, suggesting they may impair TNSALP dimer formation and stability. Clinical and biochemical follow-up revealed improvements after six years of ERT. Reporting this novel combination of ALPL variants in childhood HPP provides new insights into genotype-phenotype associations for HPP and specific sites within the TNSALP molecule potentially related to a childhood-onset HPP and skeletal and dental manifestations. Beneficial effects of ERT are implicated in skeletal and dental tissues.


Asunto(s)
Fosfatasa Alcalina , Hipofosfatasia , Femenino , Humanos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/química , Hipofosfatasia/genética , Mutación Missense , Niño
19.
Hum Mutat ; 42(1): 50-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131168

RESUMEN

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Algoritmos , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Reproducibilidad de los Resultados , Secuenciación del Exoma
20.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290338

RESUMEN

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Asunto(s)
Codón/genética , Estudios de Asociación Genética , Mutación Missense/genética , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Adolescente , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Simulación por Computador , Demografía , Femenino , Heterocigoto , Humanos , Masculino , Neurofibromina 1/química , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA