Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(12): 1299-1308, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374129

RESUMEN

Colonization of the upper respiratory tract by pneumococcus is important both as a determinant of disease and for transmission into the population. The immunological mechanisms that contain pneumococcus during colonization are well studied in mice but remain unclear in humans. Loss of this control of pneumococcus following infection with influenza virus is associated with secondary bacterial pneumonia. We used a human challenge model with type 6B pneumococcus to show that acquisition of pneumococcus induced early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function was associated with the clearance of pneumococcus. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate immune function and altered genome-wide nasal gene responses to the carriage of pneumococcus. Levels of the cytokine CXCL10, promoted by viral infection, at the time pneumococcus was encountered were positively associated with bacterial load.


Asunto(s)
Coinfección/inmunología , Gripe Humana/inmunología , Mucosa Nasal/inmunología , Infecciones Neumocócicas/inmunología , Quimiocina CXCL10/inmunología , Quimiotaxis de Leucocito/inmunología , Método Doble Ciego , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Streptococcus pneumoniae
2.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718049

RESUMEN

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/inmunología , Ratones , Humanos , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/metabolismo , Femenino , Nasofaringe/microbiología
3.
J Allergy Clin Immunol ; 153(6): 1574-1585.e14, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467291

RESUMEN

BACKGROUND: The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE: We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS: A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS: Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS: Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.


Asunto(s)
Asma , Microbiota , Nasofaringe , Humanos , Asma/microbiología , Niño , Preescolar , Masculino , Nasofaringe/microbiología , Femenino , Adolescente , Estudios Transversales , Estudios de Casos y Controles , ARN Ribosómico 16S/genética , Progresión de la Enfermedad , Estudios Prospectivos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
4.
J Allergy Clin Immunol ; 152(6): 1352-1367, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838221

RESUMEN

Asthma is the most prevalent noncommunicable disease in childhood, characterized by reversible airway constriction and inflammation of the lower airways. The respiratory tract consists of the upper and lower airways, which are lined with a diverse community of microbes. The composition and density of the respiratory microbiome differs across the respiratory tract, with microbes adapting to the gradually changing physiology of the environment. Over the past decade, both the upper and lower respiratory microbiomes have been implicated in the etiology and disease course of asthma, as well as in its severity and phenotype. We have reviewed the literature on the role of the respiratory microbiome in asthma, making a careful distinction between the relationship of the microbiome with development of childhood asthma and its relationship with the disease course, while accounting for age and the microbial niches studied. Furthermore, we have assessed the literature regarding the underlying asthma endotypes and the impact of the microbiome on the host immune response. We have identified distinct microbial signatures across the respiratory tract associated with asthma development, stability, and severity. These data suggest that the respiratory microbiome may be important for asthma development and severity and may therefore be a potential target for future microbiome-based preventive and treatment strategies.


Asunto(s)
Asma , Microbiota , Humanos , Sistema Respiratorio , Inflamación/complicaciones , Inmunidad
5.
J Infect Dis ; 228(7): 957-965, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37246259

RESUMEN

BACKGROUND: Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS: A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS: The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS: Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Niño , Gambia/epidemiología , Streptococcus pyogenes , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Vacunas Atenuadas , Inmunoglobulina G
6.
Curr Opin Infect Dis ; 36(5): 371-378, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466039

RESUMEN

PURPOSE OF REVIEW: Antibiotic use is associated with development of antimicrobial resistance and dysregulation of the microbiome (the overall host microbial community). These changes have in turn been associated with downstream adverse health outcomes. This review analyses recent important publications in a rapidly evolving field, contextualizing the available evidence to assist clinicians weighing the potential risks of antibiotics on a patient's microbiome. RECENT FINDING: Although the majority of microbiome research is observational, we highlight recent interventional studies probing the associations between antibiotic use, microbiome disruption, and ill-health. These studies include germ-free mouse models, antibiotic challenge in healthy human volunteers, and a phase III study of the world's first approved microbiome-based medicine. SUMMARY: The growing body of relevant clinical and experimental evidence for antibiotic-mediated microbiome perturbation is concerning, although further causal evidence is required. Within the limits of this evidence, we propose the novel term 'microbiotoxicity' to describe the unintended harms of antibiotics on a patient's microbiome. We suggest a framework for prescribers to weigh microbiotoxic effects against the intended benefits of antibiotic use.


Asunto(s)
Antibacterianos , Microbiota , Animales , Ratones , Humanos , Antibacterianos/efectos adversos
7.
Pediatr Res ; 94(6): 2047-2053, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37491587

RESUMEN

BACKGROUND: Recurrent respiratory tract infections (rRTIs) frequently affect young children and are associated with antibody deficiencies. We investigated the prevalence of and epidemiological risk factors associated with antibody deficiencies in young children with rRTIs and their progression over time, and linked these to prospectively measured RTI symptoms. METHODS: We included children <7 years with rRTIs in a prospective cohort study. Patient characteristics associated with antibody deficiencies were identified using multivariable logistic regression analysis. RESULTS: We included 146 children with a median age of 3.1 years. Daily RTI symptoms were monitored in winter in n = 73 children and repeated immunoglobulin level measurements were performed in n = 45 children. Antibody deficiency was diagnosed in 56% and associated with prematurity (OR 3.17 [1.15-10.29]) and a family history of rRTIs (OR 2.37 [1.11-5.15]). Respiratory symptoms did not differ between children with and without antibody deficiencies. During follow-up, antibody deficiency diagnosis remained unchanged in 67%, while 18% of children progressed to a more severe phenotype. CONCLUSION: Immune maturation and genetic predisposition may lie at the basis of antibody deficiencies commonly observed in early life. Because disease severity did not differ between children with and without antibody deficiency, we suggest symptom management can be similar for all children with rRTIs. IMPACT: An antibody deficiency was present in 56% of children <7 years with recurrent respiratory tract infections (rRTIs) in a Dutch tertiary hospital setting. Prematurity and a family history of rRTIs were associated with antibody deficiencies, suggesting that immune maturation and genetic predisposition may lie at the basis of antibody deficiencies in early life. RTI symptoms did not differ between children with and without antibody deficiency, suggesting that symptom management can be similar for all children with rRTIs, irrespective of humoral immunological deficiencies. During follow-up, 18% of children progressed to a more severe phenotype, emphasizing that early diagnosis is warranted to prevent long-term morbidity and increase quality of life.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria , Infecciones del Sistema Respiratorio , Humanos , Niño , Preescolar , Calidad de Vida , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología
8.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003242

RESUMEN

Protracted bacterial bronchitis (PBB) causes chronic wet cough for which seasonal azithromycin is increasingly used to reduce exacerbations. We investigated the impact of seasonal azithromycin on antimicrobial resistance and the nasopharyngeal microbiome. In an observational cohort study, 50 children with PBB were enrolled over two consecutive winters; 25/50 at study entry were designated on clinical grounds to take azithromycin over the winter months and 25/50 were not. Serial nasopharyngeal swabs were collected during the study period (12-20 months) and cultured bacterial isolates were assessed for antimicrobial susceptibility. 16S rRNA-based sequencing was performed on a subset of samples. Irrespective of azithromycin usage, high levels of azithromycin resistance were found; 73% of bacteria from swabs in the azithromycin group vs. 69% in the comparison group. Resistance was predominantly driven by azithromycin-resistant S. pneumoniae, yet these isolates were mostly erythromycin susceptible. Analysis of 16S rRNA-based sequencing revealed a reduction in within-sample diversity in response to azithromycin, but only in samples of children actively taking azithromycin at the time of swab collection. Actively taking azithromycin at the time of swab collection significantly contributed to dissimilarity in bacterial community composition. The discrepancy between laboratory detection of azithromycin and erythromycin resistance in the S. pneumoniae isolates requires further investigation. Seasonal azithromycin for PBB did not promote antimicrobial resistance over the study period, but did perturb the microbiome.


Asunto(s)
Infecciones Bacterianas , Bronquitis Crónica , Microbiota , Niño , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Azitromicina/uso terapéutico , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Enfermedad Crónica , Tos/tratamiento farmacológico , Farmacorresistencia Bacteriana , Eritromicina , ARN Ribosómico 16S/genética , Estaciones del Año , Streptococcus pneumoniae
9.
Neuroimage ; 254: 119169, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367650

RESUMEN

Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests that despite global covariance of dMRI metrics in neonates, each metric represents information about specific (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.


Asunto(s)
Nacimiento Prematuro , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Neuritas , Embarazo , Sustancia Blanca/diagnóstico por imagen
10.
Br J Cancer ; 126(9): 1318-1328, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35292756

RESUMEN

BACKGROUND: Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. METHODS: A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. RESULTS: Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus, Actinomyces, Bifidobacterium and Roseburia), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9-485 cases) and lack of independent external validation (76.7%). CONCLUSIONS: This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Biomarcadores , Neoplasias Colorrectales/diagnóstico , Disbiosis , Humanos , Estudios Prospectivos
11.
Curr Opin Infect Dis ; 35(3): 215-222, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35665715

RESUMEN

PURPOSE OF REVIEW: The respiratory microbiota has a role in respiratory tract infection (RTI) pathogenesis. On the mucosa, the respiratory microbiota interacts with potential pathogenic viruses, bacteria and the host immune system, including secretory IgA (sIgA). This review discusses the role of the respiratory microbiota and its interaction with the (mucosal) immune system in RTI susceptibility, as well as the potential to exploit the microbiota to promote health and prevent RTIs. RECENT FINDINGS: Recent studies confirm that specific microbiota profiles are associated with RTI susceptibility and during susceptibility and found accompanying RTIs, although clear associations have not yet been found for SARS-CoV-2 infection. sIgA plays a central role in RTI pathogenesis: it stands under control of the local microbiota, while at the same time influencing bacterial gene expression, metabolism and defense mechanisms. Respiratory microbiota interventions are still newly emerging but promising candidates for probiotics to prevent RTIs, such as Corynebacterium and Dolosigranulum species, have been identified. SUMMARY: Improved understanding of the respiratory microbiota in RTIs and its interplay with the immune system is of importance for early identification and follow-up of individuals at risk of infection. It also opens doors for future microbiota interventions by altering the microbiota towards a healthier state to prevent and/or adjunctively treat RTIs.


Asunto(s)
COVID-19 , Microbiota , Infecciones del Sistema Respiratorio , Bacterias/genética , Promoción de la Salud , Humanos , Inmunoglobulina A Secretora , Infecciones del Sistema Respiratorio/prevención & control , SARS-CoV-2
12.
Clin Infect Dis ; 72(2): 212-221, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31919525

RESUMEN

BACKGROUND: Recent research suggests that the microbiota affects susceptibility to both respiratory tract infections (RTIs) and gastrointestinal infections (GIIs). In order to optimize global treatment options, it is important to characterize microbiota profiles across different niches and geographic/socioeconomic areas where RTI and GII prevalences are high. METHODS: We performed 16S sequencing of nasopharyngeal swabs from 209 Venezuelan Amerindian children aged 6 weeks-59 months who were participating in a 13-valent pneumococcal conjugate vaccine (PCV13) study. Using random forest models, differential abundance testing, and regression analysis, we determined whether specific bacteria were associated with RTIs or GIIs and variation in PCV13 response. RESULTS: Microbiota compositions differed between children with or without RTIs (P = .018) or GIIs (P = .001). Several species were associated with the absence of infections. Some of these health-associated bacteria are also observed in developed regions, such as Corynebacterium (log2(fold change [FC]) = 3.30 for RTIs and log2(FC) = 1.71 for GIIs), while others are not commonly observed in developed regions, such as Acinetobacter (log2(FC) = 2.82 and log2(FC) = 5.06, respectively). Klebsiella spp. presence was associated with both RTIs (log2(FC) = 5.48) and GIIs (log2(FC) = 7.20). CONCLUSIONS: The nasopharyngeal microbiota of rural Venezuelan children included several bacteria that thrive in tropical humid climates. Interestingly, nasopharyngeal microbiota composition not only differed in children with an RTI but also in those with a GII, which suggests a reciprocal interplay between the 2 environments. Knowledge of region-specific microbiota patterns enables tailoring of preventive and therapeutic approaches.


Asunto(s)
Enfermedades Transmisibles , Microbiota , Infecciones Neumocócicas , Infecciones del Sistema Respiratorio , Bacterias/genética , Niño , Humanos , Lactante , Recién Nacido , Nasofaringe , Vacunas Neumococicas , Infecciones del Sistema Respiratorio/epidemiología
13.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661126

RESUMEN

Otitis media with effusion (OME) is a common inflammatory disease that primarily affects children. OME is defined as a chronic low-grade inflammation of the middle ear (ME), without any signs of infection and with effusion persisting in the ME for more than 3 months. The precise pathogenesis is, however, not fully understood. Here, we comprehensively characterized and compared the host immune responses (inflammatory cells and mediators) and the overall microbial community composition (microbiota) present in matched middle ear effusion (MEE) samples, external ear canal (EEC) lavages, and nasopharynx (NPH) samples from children with OME. Female patients had significantly increased percentages of T lymphocytes and higher levels of a wide array of inflammatory mediators in their MEE compared to that of male patients, which were unrelated to microbiota composition. The relative abundances of identified microorganisms were strongly associated with their niche of origin. Furthermore, specific inflammatory mediators were highly correlated with certain bacterial species. Interestingly, some organisms displayed a niche-driven inflammation pattern in which presence of Haemophilus spp. and Corynebacterium propinquum in MEE was accompanied by proinflammatory mediators, whereas their presence in NPH was accompanied by anti-inflammatory mediators. For Turicella and Alloiococcus, we found exactly the opposite results, i.e., an anti-inflammatory profile when present in MEE, whereas their presence in the the NPH was accompanied by a proinflammatory profile. Together, our results indicate that immune responses in children with OME are highly niche- and microbiota-driven, but gender-based differences were also observed, providing novel insight into potential pathogenic mechanisms behind OME.


Asunto(s)
Microbiota , Otitis Media con Derrame/inmunología , Otitis Media con Derrame/microbiología , Bacterias/clasificación , Bacterias/inmunología , Bacterias/aislamiento & purificación , Niño , Preescolar , Citocinas/inmunología , Oído Externo/inmunología , Oído Externo/microbiología , Oído Medio/inmunología , Oído Medio/microbiología , Femenino , Humanos , Inflamación , Masculino , Microbiota/inmunología , Nasofaringe/inmunología , Nasofaringe/microbiología , Especificidad de Órganos , Otitis Media con Derrame/patología , Factores Sexuales , Linfocitos T/inmunología
14.
Trends Immunol ; 38(3): 206-216, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28017520

RESUMEN

Common variable immunodeficiency (CVID) is an immune disorder that not only causes increased susceptibility to infection, but also to inflammatory complications such as autoimmunity, lymphoid proliferation, malignancy, and granulomatous disease. Recent findings implicate the microbiome as a driver of this systemic immune dysregulation. Here, we critically review the current evidence for a role of the microbiome in the pathogenesis of CVID immune dysregulation, and describe the possible immunologic mechanisms behind causes and consequences of microbial dysbiosis in CVID. We integrate this evidence into a model describing a role for the gut microbiota in the maintenance of inflammation and immune dysregulation in CVID, and suggest research strategies to contribute to the development of new diagnostic tools and therapeutic targets.


Asunto(s)
Inmunodeficiencia Variable Común/microbiología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Inflamación/inmunología , Animales , Autoinmunidad , Inmunodeficiencia Variable Común/inmunología , Disbiosis/microbiología , Medicina Basada en la Evidencia , Homeostasis , Humanos , Inmunomodulación , Inflamación/microbiología , Modelos Inmunológicos
15.
Am J Respir Crit Care Med ; 200(6): 760-770, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30883192

RESUMEN

Rationale: The respiratory microbiota is increasingly being appreciated as an important mediator in the susceptibility to childhood respiratory tract infections (RTIs). Pathogens are presumed to originate from the nasopharyngeal ecosystem.Objectives: To investigate the association between early life respiratory microbiota and development of childhood RTIs.Methods: In a prospective birth cohort (Microbiome Utrecht Infant Study: MUIS), we characterized the oral microbiota longitudinally from birth until 6 months of age of 112 infants (nine regular samples/subject) and compared them with nasopharyngeal microbiota using 16S-rRNA-based sequencing. We also characterized oral and nasopharynx samples during RTI episodes in the first half year of life.Measurements and Main Results: Oral microbiota were driven mostly by feeding type, followed by age, mode of delivery, and season of sampling. In contrast to our previously published associations between nasopharyngeal microbiota development and susceptibility to RTIs, oral microbiota development was not directly associated with susceptibility to RTI development. However, we did observe an influx of oral taxa, such as Neisseria lactamica, Streptococcus, Prevotella nanceiensis, Fusobacterium, and Janthinobacterium lividum, in the nasopharyngeal microbiota before and during RTIs, which was accompanied by reduced presence and abundance of Corynebacterium, Dolosigranulum, and Moraxella spp. Moreover, this phenomenon was accompanied by reduced niche differentiation indicating loss of ecological topography preceding confirmed RTIs. This loss of ecological topography was further augmented by start of daycare, and linked to consecutive development of symptomatic infections.Conclusions: Together, our results link the loss of topography to subsequent development of RTI episodes. This may lead to new insights for prevention of RTIs and antibiotic use in childhood.


Asunto(s)
Microbiota , Boca/microbiología , Nasofaringe/microbiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Estudios Prospectivos
17.
J Infect Dis ; 217(2): 298-309, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099932

RESUMEN

Background: Carriage of Mycoplasma pneumoniae (Mp) in the nasopharynx is considered a prerequisite for pulmonary infection. It is interesting to note that Mp carriage is also detected after infection. Although B cells are known to be involved in pulmonary Mp clearance, their role in Mp carriage is unknown. Methods: In this study, we show in a mouse model that Mp persists in the nose after pulmonary infection, similar to humans. Results: Infection of mice enhanced Mp-specific immunoglobulin (Ig) M and IgG levels in serum and bronchoalveolar lavage fluid. However, nasal washes only contained elevated Mp-specific IgA. These differences in Ig compartmentalization correlated with differences in Mp-specific B cell responses between nose- and lung-draining lymphoid tissues. Moreover, transferred Mp-specific serum Igs had no effect on nasal carriage in B cell-deficient µMT mice, whereas this enabled µMT mice to clear pulmonary Mp infection. Conclusions: We report the first evidence that humoral immunity is limited in clearing Mp from the upper respiratory tract.


Asunto(s)
Linfocitos B/inmunología , Portador Sano/inmunología , Mycoplasma pneumoniae/inmunología , Nasofaringe/inmunología , Nasofaringe/microbiología , Neumonía por Mycoplasma/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Inmunoglobulina A/análisis , Inmunoglobulina G/sangre , Ratones Endogámicos C57BL , Mucosa Nasal/inmunología
19.
Am J Respir Crit Care Med ; 196(12): 1582-1590, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28665684

RESUMEN

RATIONALE: Perinatal and postnatal influences are presumed important drivers of the early-life respiratory microbiota composition. We hypothesized that the respiratory microbiota composition and development in infancy is affecting microbiota stability and thereby resistance against respiratory tract infections (RTIs) over time. OBJECTIVES: To investigate common environmental drivers, including birth mode, feeding type, antibiotic exposure, and crowding conditions, in relation to respiratory tract microbiota maturation and stability, and consecutive risk of RTIs over the first year of life. METHODS: In a prospectively followed cohort of 112 infants, we characterized the nasopharyngeal microbiota longitudinally from birth on (11 consecutive sample moments and the maximum three RTI samples per subject; in total, n = 1,121 samples) by 16S-rRNA gene amplicon sequencing. MEASUREMENTS AND MAIN RESULTS: Using a microbiota-based machine-learning algorithm, we found that children experiencing a higher number of RTIs in the first year of life already demonstrate an aberrant microbial developmental trajectory from the first month of life on as compared with the reference group (0-2 RTIs/yr). The altered microbiota maturation process coincided with decreased microbial community stability, prolonged reduction of Corynebacterium and Dolosigranulum, enrichment of Moraxella very early in life, followed by later enrichment of Neisseria and Prevotella spp. Independent drivers of these aberrant developmental trajectories of respiratory microbiota members were mode of delivery, infant feeding, crowding, and recent antibiotic use. CONCLUSIONS: Our results suggest that environmental drivers impact microbiota development and, consequently, resistance against development of RTIs. This supports the idea that microbiota form the mediator between early-life environmental risk factors for and susceptibility to RTIs over the first year of life.


Asunto(s)
Ambiente , Microbiota/fisiología , Nasofaringe/microbiología , Infecciones del Sistema Respiratorio/epidemiología , Antibacterianos/uso terapéutico , Lactancia Materna/estadística & datos numéricos , Niño , Estudios de Cohortes , Parto Obstétrico/estadística & datos numéricos , Femenino , Humanos , Lactante , Alimentos Infantiles/estadística & datos numéricos , Estudios Longitudinales , Masculino , Países Bajos/epidemiología , Estudios Prospectivos
20.
Eur Respir J ; 49(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356374

RESUMEN

Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of the upper and lower respiratory niches suggests that the lungs of infants with CF may have their own microbiome that seems seeded by, but is not identical to, the upper respiratory tract microbiome.


Asunto(s)
Bacterias/clasificación , Infecciones Bacterianas/microbiología , Fibrosis Quística/microbiología , Microbiota , Infecciones del Sistema Respiratorio/microbiología , Bacterias/aislamiento & purificación , Líquido del Lavado Bronquioalveolar/microbiología , Femenino , Humanos , Lactante , Masculino , Países Bajos , Estudios Prospectivos , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA