Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 18(1): 222, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565380

RESUMEN

BACKGROUND: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. METHODS: To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit ß (IKKß), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-D-aspartate (NMDA) excitotoxicity in vitro. RESULTS: Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKß promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. CONCLUSIONS: These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKß promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.


Asunto(s)
Quinasa I-kappa B/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Neuronas/patología , Neuroprotección/fisiología , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/patología
2.
Sci Rep ; 10(1): 8670, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457323

RESUMEN

Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, involved in Alzheimer's disease pathogenesis. Anti-TNF-α therapeutic approaches currently used in autoimmune diseases have been proposed as a therapeutic strategy in AD. We have previously examined the role of TNF-α and anti-TNF-α drugs in AD, using 5XFAD mice, and we have found a significant role for peripheral TNF-α in brain inflammation. Here we investigated the role of mouse TNF-α on the AD-like phenotype of 5XFAD mice using a knock-in mouse with deletion of the 3'UTR of the endogenous TNF-α (TNFΔARE/+) that develops rheumatoid arthritis and Crohn's disease. 5XFAD/TNFΔARE/+ mice showed significantly decreased amyloid deposition. Interestingly, microglia but not astrocytes were activated in 5XFAD/ TNFΔARE/+ brains. This microglial activation was associated with increased infiltrating peripheral leukocytes and perivascular macrophages and synaptic degeneration. APP levels and APP processing enzymes involved in Aß production remained unchanged, suggesting that the reduced amyloid burden can be attributed to the increased microglial and perivascular macrophage activation caused by TNF-α. Peripheral TNF-α levels were increased while brain TNF-α remained the same. These data provide further evidence for peripheral TNF-α as a mediator of inflammation between the periphery and the brain.


Asunto(s)
Regiones no Traducidas 3'/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Factor de Necrosis Tumoral alfa/genética , Enfermedad de Alzheimer/genética , Animales , Artritis Reumatoide/genética , Encéfalo/patología , Enfermedad de Crohn/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA