Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Org Chem ; 88(23): 16186-16195, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37948325

RESUMEN

Microdroplet chemistry has been proven to amazingly accelerate many chemical and biological reactions in the past 2 decades. Current microdroplet accelerated reactions are predominantly symmetric synthetic but minorly asymmetric synthetic reactions, where stereoselectivity is scarcely concerned. This study selected unimolecular and bimolecular reactions, multicomponent Passerini reactions, and enzymatic ketone reduction as the model reactions to illustrate whether reaction acceleration of microdroplet chemistry is favorable to retaining a chiral center and controlling the enantioselectivity or not. The results illustrated that microdroplet chemistry did not disrupt pre-existing stereogenic centers in chiral starting materials during reactions but did harm to stereospecificity in asymmetric catalysis by chiral catalysts and chiral organic ligands with the exclusion of enzymatic reactions. Our preliminary study reminds us of more cautions to the product enantioselectivity when conducting asymmetric catalysis in microdroplets. We also hope this study may promote more valuable further research on the stereoselectivity of microdroplet chemistry.

2.
J Org Chem ; 88(15): 11186-11196, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37493511

RESUMEN

α-Acyloxy carboxamides are important multifunctional natural products that show bioactive and pharmacological activities. Traditional three-component Passerini reactions among isocyanates, aldehydes/ketones, and carboxylic acids for affording α-acyloxy carboxamides suffer from several drawbacks such as long reaction time, high reaction temperature, special reaction devices, etc. Herein, we developed a high-efficiency microdroplet method for accelerating the Passerini reactions by 3 orders of magnitude by comparing with the rate constants in bulk, achieving high-yield and gram-scale (scaling up to 1.91 g for 1 h collection) synthesis of α-acyloxy carboxamides at near room temperature. The Passerini microdroplet method shows a wide scope for a variety of benzoic acids, aryl aldehydes, and isocyanates. Moreover, the Passerini reaction was poorly conducted in aqueous microdroplets but well accelerated in acetonitrile microdroplets with at least 230 times efficiency than on-water Passerini reactions. All results proved it an attractive alternative to classic organic synthesis for the construction of α-acyloxy carboxamides and derivatives.

3.
J Am Chem Soc ; 144(3): 1306-1312, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35015550

RESUMEN

Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.

4.
J Org Chem ; 87(8): 5287-5295, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35333518

RESUMEN

Because of their unique properties and high biological activities, organophosphorus compounds have been used worldwide in agricultural, industrial, medicinal, and veterinary applications. Conventional strategies for direct phosphonylation suffer from the usage of stoichiometric or excessive metallic or nonmetallic catalysts and long reaction times under harsh conditions, leading to a strong desire for environment-friendly protocols for phosphonylation. A protocol for the accelerated phosphonylation of N-phenyltetrahydroisoquinolines in minutes was developed without the use of any catalyst in microdroplets. The phosphonylation process was completed (>85% yields) in 10 min at 40 °C using 0.8 equiv 2,3-dicyano-5,6-dichlorobenzoquinone as the oxidant and acetonitrile as the solvent. The microdroplet phosphonylation strategy showed good suitability to alkyl phosphites and N-phenyltetrahydroisoquinolines bearing electron-withdrawing and electron-donating substitutes, and the yields of the microdroplet reaction were much greater than those of the bulk (accelerated by two orders of magnitude from the ratio of the rate constants using the microdroplet and the bulk method). Furthermore, microdroplet phosphonylation can be scaled up to a 1-phenyl-2-dimethylphosphonite-1,2,3,4-tetrahydroisoquinoline amount of 510 mg h-1 by spraying 0.1 mol L-1 N-phenyltetrahydroisoquinoline at 300 µL min-1. These figures of merit make it a promising alternative to classic organic methodologies for the synthesis of organophosphorus compounds.


Asunto(s)
Compuestos Organofosforados , Catálisis
5.
Analyst ; 147(21): 4838-4844, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36128870

RESUMEN

Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.


Asunto(s)
Glicerofosfolípidos , Ácido Peracético , Fosfatidilcolinas/química , Iones/química , Compuestos Epoxi , Carbono , Catálisis
6.
Mol Pharm ; 18(8): 2935-2946, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34191525

RESUMEN

The adoptive transfer of natural killer (NK) cells, which can recognize and obliterate cancer cells, provides a practical alternative to current treatment modalities to improve cancer patients' survival. However, translating NK cell therapies to treat solid tumors has proven challenging due to the tumor microenvironment (TME). Hypoxia in the TME induces immunosuppression that inhibits the cytotoxic function of NK cells. Thus, reversing hypoxia-induced immunosuppression is critical for effective adoptive NK cell immunotherapy. In this study, we use manganese dioxide nanoparticles (MnO2 NPs) to catalyze the degradation of tumor-produced hydrogen peroxide, thereby generating oxygen. For improved biocompatibility and modulation of oxygen production, the MnO2 NPs were encapsulated into poly(lactic-co-glycolic) to produce particles that are 116 nm in size and with a ζ-potential of +17 mV (PLGA-MnO2 NPs). The PLGA-MnO2 NPs showed first-order oxygen production and sustained high oxygen tension compared to equivalent amounts of bare MnO2 NPs in the presence of H2O2. The PLGA-MnO2 NPs were biocompatible, reduced hypoxia after penetration into the core of cancer spheroids, and decreased hypoxia-induced factor 1 α expression. Reducing hypoxia in the spheroid resulted in a decrease in the potent immunosuppressors, adenosine, and lactate, which was confirmed by electrospray ionization mass spectroscopy (ESI-MS). ESI-MS also showed a change in the metabolism of the amino acids aspartate, glutamine, and glutamate after hypoxia reduction in the cancer cells. Notably, the spheroids' microenvironment changes enhanced NK cells' cytotoxicity, which obliterated the spheroids. These results demonstrate that reducing hypoxia-induced immunosuppression in tumors is a potent strategy to increase the potency of cytotoxic immune cells in the TME. The developed NPs are promising new tools to improve adoptive NK cell therapy.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Células Asesinas Naturales/inmunología , Compuestos de Manganeso/farmacología , Nanopartículas del Metal/química , Nanocápsulas/química , Óxidos/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Esferoides Celulares/inmunología , Adenosina/metabolismo , Traslado Adoptivo/métodos , Neoplasias de la Mama/patología , Hipoxia de la Célula/inmunología , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Ácido Láctico/metabolismo , Células MCF-7 , Compuestos de Manganeso/química , Óxidos/química , Tamaño de la Partícula , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
7.
Angew Chem Int Ed Engl ; 59(1): 209-214, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31639243

RESUMEN

Reported here is the first on-demand electrochemical epoxidation incorporated into the standard nano-electrospray ionization mass spectrometry (nanoESI-MS) workflow for double-bond identification. The capability lies in a novel tunable electro-epoxidation of double bonds, where onset of the reaction can be controlled by simply tuning the spray voltage. On-demand formation of mono-/multiple epoxides is achieved at different voltages. The electro-epoxidized products are then fragmented by tandem MS to generate diagnostic ions, indicating the double bond position(s). The process is completed within seconds, holding great potential for high-throughput analysis. The rapid switch-on/off electro-epoxidation of a single sample, the low sample consumption, the demonstrated applicability to complex lipids containing multiple double bonds, and the advantage of not requiring extra apparatus make this method attractive for use in lipid-related biological studies.

8.
Angew Chem Int Ed Engl ; 59(45): 19862-19867, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32725670

RESUMEN

Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution-air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C-H/N-H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) "reversible" electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.

9.
J Org Chem ; 84(2): 851-859, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30582325

RESUMEN

The formation of amide bonds is one of the most valuable transformations in organic synthesis. Beckmann rearrangement is a well-known method for producing secondary amides from ketoximes. This study demonstrates the rapid synthesis of ketoximes and amides in microdroplets. Many factors are found to affect the yield, such as microdroplet generation devices, temperature, catalysts, and concentrations of reactants. In particular, the temperature has a great influence on the synthesis of amide, which is demonstrated by a sharp ascendance to the yield when the temperature was increased to 45 °C. The best amide yield (93.3%) can be obtained by using coaxial flowing devices, a sulfonyl chloride compound as a catalyst, and heating to 55 °C in microdroplets. The yields can reach 78.7-91.3% for benzoylaniline and 87.2-93.4% for benzophenone oximes in several seconds in microdroplets compared to 10.1-66.1% and 82.5-93.3% in several hours in the bulk phase. Apart from the dramatically decreased reaction time and enhanced reaction yields, the microdroplet synthesis is also free of severe reaction environments (anhydrous and anaerobic conditions). In addition, the synthesis in microdroplets also saves reactants and solvents and reduces the waste amounts. All of these merits indicate that the microdroplet synthesis is a high-efficiency green methodology.

10.
Rapid Commun Mass Spectrom ; 33(12): 1091-1096, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30912597

RESUMEN

RATIONALE: A reactive paper spray mass spectrometric approach for rapid analysis of formaldehyde (FA) in cosmetics was developed based on an on-line derivatization reaction between formaldehyde and dansyl hydrazine (DH). METHODS: The whole experimental procedure consists of three simple steps: (1) load the sample (2 µL) onto the paper; (2) add the spray solvent (10 µL DH); (3) apply a high voltage (+4.5 kV) to the sample. We used an internal standard (dansyl amide) to create the analytical calibration curve. The established approach has been successfully applied in the quantitation of FA in facial masks. RESULTS: Our approach shows good linearity for the FA concentrations between 3 and 300 µg L-1 , and the limit of detection is at 0.8 µg L-1 . Five brands of facial masks were analyzed by this approach without any sample pretreatment, and the FA contents varied from 0.05 to 2.6 mg L-1 with favorable recoveries achieved between 93.2% and 111.3%. CONCLUSIONS: This established approach presents a solution to rapid quantitation at extremely low cost of consumables and has potential as a simple, sensitive and robust strategy for the direct analysis of FA in cosmetics, food, environmental, and biological samples.


Asunto(s)
Cosméticos/química , Formaldehído/análisis , Espectrometría de Masas/métodos , Límite de Detección
11.
Electrophoresis ; 39(7): 933-940, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29236305

RESUMEN

Graphene oxide functionalized silica microspheres (GO@SiO2 ) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO2 ). GO@SiO2 and G@SiO2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single-particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of -6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO2 and G@SiO2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π-π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO2 and G@SiO2 . Well over-run, over-day and over-column precisions (retention time: 0.3-1.4, 1.1-3.8 and 2.8-5.2%, respectively; peak area: 2.6-6.5, 4.8-8.3 and 6.5-12.6%, respectively) of GO@SiO2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity (R2 = 0.9961-0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 µg/L for phenanthrene. Further application to fresh water increased the visibility of the proposed material, where good spike recoveries in the range 89-96% were offered.


Asunto(s)
Electrocromatografía Capilar/métodos , Grafito/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Dióxido de Silicio/química , Enlace de Hidrógeno , Límite de Detección , Microesferas , Hidrocarburos Policíclicos Aromáticos/química , Solventes/química , Agua/química
12.
J Sep Sci ; 41(7): 1524-1531, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29274204

RESUMEN

Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 µg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%).


Asunto(s)
Arsénico/aislamiento & purificación , Arsénico/química , Cromatografía Líquida de Alta Presión/instrumentación , Diseño de Equipo , Espectrometría de Masas
13.
Mikrochim Acta ; 185(9): 425, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30136039

RESUMEN

This work demonstrates the power of graphene and graphene oxide (GO) as stationary phases for high performance liquid chromatography (HPLC) based elemental speciation analysis combined with detection by inductively coupled plasma mass spectrometry (ICP-MS). Inorganic mercuric and organomercuric compounds coordinate with 2-thiosalicylic acid (TSA) to form Hg-TSA complexes. These complexes are retained by GO owing to its strong π electron stacking capability for TSA. Separation of the four mercury species tested was achieved within 12 min with resolutions of 1.8-3.4. Similarly, inorganic anionic species of arsenic and selenium, and organoarsenicals are electrostatically attracted by aromatic quaternary ammonium cations in the mobile phases. Organoarsenicals also can be separated by using long alkyl quaternary ammonium compounds. Aromatic quaternary ammonium compounds possess particularly high affinity to GO because of strong π interaction. This leads to effective retention of the As/Se anions. A comparison between graphene and GO as stationary phases for HPLC separation of mercury and arsenic species demonstrates negligible difference. Arsenic species are separated within 32 min, and selenium species are achieved within 20 min. The mobile phase also allows efficient separation of iodate, iodide, bromate, bromide, chromic acid and chromate. Analysis of a certified fish tissue by HPLC-ICP-MS using the GO@SiO2 column demonstrates its feasibility for routine elemental analysis. Good agreement is found between experimental results and certified values, with recoveries ranging between 92 and 96%. Graphical abstract Graphene oxide as a stationary phase for high performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC-ICP-MS) in speciation analyses of mercury, arsenic, selenium, iodine, bromine and chromium is achieved for the first time.

14.
Anal Chem ; 89(5): 3191-3198, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28193008

RESUMEN

Desorption electrospray ionization mass spectrometry (DESI-MS) previously has been used to capture and identify transient intermediates in electrochemical redox reactions on a platinum-covered rotating waterwheel. We present here two different setups that use a flat surface with porous carbon tape as the working electrode, where analyte-containing microdroplets from the DESI probe contacted with electrolyte supplied onto the surface. One setup had the conducting carbon tape in the form of a grooved inclined plane; the other one was in the form of a flat plane that had the conducting carbon tape as its front surface. Both these setups, which were relatively robust and easy to operate, overcame interference from the electrospray sheath gas that disturbs and dries the flowing electrolyte. By using the inclined-plane device, we observed radical cations and dimer species generated in the electrochemical oxidation of triphenylamine, diimine and imine alcohol in the electrochemical oxidation of uric acid, and the reductive cleavage of disulfide bonds in glutathione disulfide. By using the device with the flat carbon tape, we detected nitrenium ions generated in the electrochemical oxidation of N,N'-dimethyoxydiphenylamine and di-p-tolylamine. Our experience suggests that the flat porous carbon tape surface might be preferable over the inclined plane because of its ease of setup.

15.
J Sep Sci ; 40(16): 3343-3350, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28627742

RESUMEN

Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns.

16.
Angew Chem Int Ed Engl ; 56(13): 3562-3565, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28225181

RESUMEN

Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min-1 for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.

17.
Analyst ; 140(1): 162-73, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25373008

RESUMEN

To improve repeatability and efficiency and to simplify the operation procedure of capillary electrophoresis (CE), a pressurized CE system (p-CE) with injection valve sampling was developed. It consisted of one high-pressure pump, a six-port injection valve, a PEEK cross, a separation and back pressure capillary, an ultraviolet-visible detector and a high voltage power supply. The pressure-driven flow ranging from 4.5 nL min(-1) to 0.81 µL min(-1) in the separation capillary was produced by splitting to the flow from the high-pressure pumps (0.005-0.4 mL min(-1)). Nano-volume sample injection (<10 nL) was conducted by a micro-volume rotary injector (0.5-5 µL) with flow splitting. In the p-CE system, the new commercial capillary could be directly used without any wash, and the capillary-flush process between runs was also eliminated. In this case, the analytes were driven toward the outlet of the separation capillary by the pressurized flow, the electric field force and minute electroosmotic flow, and they were separated owing to the electrophoretic mobility. The p-CE system allows for the independent variation of the pressurized flow rate and electrical field and electrophoretic separation of good repeatability (below 3%) under high electrical fields (500-1000 V cm(-1)) and flow rate gradient modes. The feasibility of the p-CE system in real analysis was demonstrated by iodate quantification in iodized table salts. The separation of iodide and iodate was realized within 0.3 min, proving its high analytical speed.

18.
Food Chem ; 443: 138552, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295562

RESUMEN

Tin and lead are a global concern considering their species-dependent toxicity, bioavailability and transformation. Simultaneous speciation analysis of tin and lead is challenging for a large food capacity containing unstable species. Herein, we developed two sensitive methods for rapid quantification of tin and lead species in Antarctic seafood by high-performance liquid chromatography and inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Inorganic tin and lead, four organotin and two organolead compounds can be analysed in 16 min on a 10-cm Amphion II column (mobile phase: 4 mM sodium dodecyl benzene sulfonate at pH 2.0) with 0.02-0.24 µg L-1 detection limits. The method was applied to Antarctic krill and fish, demonstrating the presence of any tin and lead species down to µg kg-1 level. Overall, the proposed methods are sensitive, efficient and environment-friendly for routine speciation analysis of tin and lead in food samples.


Asunto(s)
Euphausiacea , Estaño , Animales , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Plomo , Alimentos Marinos , Peces , Cationes
19.
Anal Chim Acta ; 1294: 342294, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336410

RESUMEN

BACKGROUND: Tin and lead contamination is a global threat to marine ecosystems considering their species-specific toxicity, bioavailability and mobility. Hence simultaneous measurement of multiple tin and lead compounds at µg L-1 to pg L-1 levels in environmental water is always an indispensable but challengeable task. High performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is one of the most widely used choices for this purpose because of good sensitivity, strong separation power and good compatibility. Previous HPLC-ICP-MS methods based on a single elemental speciation strategy are low-efficiency and sensitivity-insufficient for a large set of unstable samples and interaction of multiple metal(loid)s down to ng L-1 levels. RESULTS: In this study, we developed a sensitive, efficient and environment-friendly analytical method for accurate quantification of inorganic and organic species of tin and lead simultaneously based on HPLC-ICP-MS with online integration of solid phase extraction (SPE). By using graphene oxide modified silica conditioned with 1 mM benzoic acid to enrich tin and lead species from 10 mL sample, detection limits were improved to 2-8 pg per liter due to satisfactory enrichment factors (522-2848 folds). The SPE-HPLC-ICP-MS method was applicable to quantification of ultra-trace tin and lead species at pg L-1 levels in uncontaminated seawater. Tributyltin was the only tin species detected at subnanograms per liter levels while Pb(II) was the only lead species detected at several nanograms per liter in thirteen coastal seawater samples collected in Hangzhou Bay, indicating light contamination of tin and lead. SIGNIFICANCE: Overall, the proposed SPE-HPLC-ICP-MS method is highly sensitive, efficient and environment-friendly that are fairly suitable to routine speciation analysis of tin and lead in environmental, food, and biological samples.


Asunto(s)
Plomo , Estaño , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Ecosistema , Agua de Mar , Extracción en Fase Sólida/métodos
20.
Chempluschem ; 88(2): e202200206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36026555

RESUMEN

Due to their important roles in medicine and asymmetric metal catalysis, the formation of Betti bases has attracted wide interest in organic chemical community. Traditional multicomponent reaction methods for synthesizing Betti bases normally require long reaction times under harsh conditions (high temperature, microwave or ultrasonic irradiation, etc.) in the presence of various catalysts. In this study, we developed a mild, highly efficient and environmentally friendly method to synthesize Betti bases without the use of any catalysts in microdroplets. The Betti reaction was accelerated by 6.53×103 in microdroplets by comparing the measured rate constant in bulk. Fifteen Betti bases were synthesized by the microdroplet method using a variety of aldehydes, naphthols and amines with 68-98 % yields at a scaled-up amount of 1.9 g h-1 . Overall it is an attractive alternative to classic organic synthesis for the construction of Betti bases and derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA