Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 474(7): 721-732, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459955

RESUMEN

KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.


Asunto(s)
Epilepsia , Triclosán , Epilepsia/metabolismo , Humanos , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1 , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Simulación del Acoplamiento Molecular , Neurotransmisores , Triclosán/farmacología
2.
Biomacromolecules ; 22(3): 1197-1210, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512161

RESUMEN

Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-to-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers.


Asunto(s)
Micelas , Polímeros , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles
3.
J Biol Chem ; 294(15): 6094-6112, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30808708

RESUMEN

Calmodulin (CaM) conveys intracellular Ca2+ signals to KCNQ (Kv7, "M-type") K+ channels and many other ion channels. Whether this "calmodulation" involves a dramatic structural rearrangement or only slight perturbations of the CaM/KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca2+] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2+/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2+/CaM has higher affinity for the B domain than for the A domain of KCNQ2-4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed that these discrete peptides spontaneously form a complex with Ca2+/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and heteronuclear single-quantum coherence NMR spectroscopy indicated the C-lobe of Ca2+-free CaM to interact with the KCNQ4 B domain (Kd ∼10-20 µm), with increasing Ca2+ molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2+, CaM undergoes lobe switching that imposes a dramatic mutually induced conformational fit to both the proximal C terminus of KCNQ4 channels and CaM, likely underlying Ca2+-dependent regulation of KCNQ gating.


Asunto(s)
Calcio/química , Calmodulina/química , Canales de Potasio KCNQ/química , Animales , Células CHO , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Cricetulus , Cristalografía por Rayos X , Humanos , Activación del Canal Iónico , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
4.
Macromol Rapid Commun ; 41(18): e2000320, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33463837

RESUMEN

New functional initiators for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines are described to introduce a thiol moiety at the α terminus. Both tosylate and nosylate initiators carrying a thioacetate group are obtained in multigram scale, from commercial reagents in two steps, including a phototriggered thiol-ene radical addition. The nosylate derivative gives access to a satisfying control over the cationic ring-opening polymerization of 2-ethyl-2-oxazoline, with dispersity values lower than 1.1 during the entire course of the polymerization, until full conversion. Cleavage of the thioacetate end group is rapidly achieved using triazabicyclodecene, thereby leading to a mercapto terminus. The latter gives access to a new subgeneration of α-functional poly(2-oxazoline)s (butyl ester, N-hydroxysuccinimidyl ester, furan) by Michael addition with commercial (meth)acrylates. The amenability of the mercapto-poly(2-ethyl-2-oxazoline) for covalent surface patterning onto acrylated surfaces is demonstrated in a microchannel cantilever spotting (µCS) experiment, characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS).


Asunto(s)
Acrilatos , Compuestos de Sulfhidrilo , Cationes , Oxazoles , Polimerizacion
5.
Molecules ; 25(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781768

RESUMEN

Water-soluble polymers are still the most popular carrier for the preparation of amorphous solid dispersions (ASDs). The advantage of this type of carrier is the fast drug release upon dissolution of the water-soluble polymer and thus the initial high degree of supersaturation of the poorly soluble drug. Nevertheless, the risk for precipitation due to fast drug release is a phenomenon that is frequently observed. In this work, we present an alternative carrier system for ASDs where a water-soluble and water-insoluble carrier are combined to delay the drug release and thus prevent this onset of precipitation. Poly(2-alkyl-2-oxazoline)s were selected as a polymer platform since the solution properties of this polymer class depend on the length of the alkyl sidechain. Poly(2-ethyl-2-oxazoline) (PEtOx) behaves as a water-soluble polymer at body temperature, while poly(2-n-propyl-2-oxazoline) (PPrOx) and poly(2-sec-butyl-2-oxazoline) (PsecBuOx) are insoluble at body temperature. Since little was known about the polymer's miscibility behaviour and especially on how the presence of a poorly-water soluble drug impacted their miscibility, a preformulation study was performed. Formulations were investigated with X-ray powder diffraction, differential scanning calorimetry (DSC) and solid-state nuclear magnetic resonance spectroscopy. PEtOx/PPrOx appeared to form an immiscible blend based on DSC and this was even more pronounced after heating. The six drugs that were tested in this work did not show any preference for one of the two phases. PEtOx/PsecBuOx on the other hand appeared to be miscible forming a homogeneous blend between the two polymers and the drugs.


Asunto(s)
Portadores de Fármacos/química , Oxazoles/química , Composición de Medicamentos , Liberación de Fármacos , Indometacina/química , Solubilidad
6.
J Biol Chem ; 293(50): 19411-19428, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30348901

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane regulates the function of many ion channels, including M-type (potassium voltage-gated channel subfamily Q member (KCNQ), Kv7) K+ channels; however, the molecular mechanisms involved remain unclear. To this end, we here focused on the KCNQ3 subtype that has the highest apparent affinity for PIP2 and performed extensive mutagenesis in regions suggested to be involved in PIP2 interactions among the KCNQ family. Using perforated patch-clamp recordings of heterologously transfected tissue culture cells, total internal reflection fluorescence microscopy, and the zebrafish (Danio rerio) voltage-sensitive phosphatase to deplete PIP2 as a probe, we found that PIP2 regulates KCNQ3 channels through four different domains: 1) the A-B helix linker that we previously identified as important for both KCNQ2 and KCNQ3, 2) the junction between S6 and the A helix, 3) the S2-S3 linker, and 4) the S4-S5 linker. We also found that the apparent strength of PIP2 interactions within any of these domains was not coupled to the voltage dependence of channel activation. Extensive homology modeling and docking simulations with the WT or mutant KCNQ3 channels and PIP2 were consistent with the experimental data. Our results indicate that PIP2 modulates KCNQ3 channel function by interacting synergistically with a minimum of four cytoplasmic domains.


Asunto(s)
Citoplasma/metabolismo , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Humanos , Canal de Potasio KCNQ3/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
7.
Biophys J ; 114(12): 2844-2854, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925021

RESUMEN

The Hv1 proton channel shares striking structural homology with fourth transmembrane helical segment-type voltage-sensor (VS) domains but manifests distinctive functional properties, including a proton-selective "aqueous" conductance and allosteric control of voltage-dependent gating by changes in the transmembrane pH gradient. The mechanisms responsible for Hv1's functional properties remain poorly understood, in part because methods for measuring gating currents that directly report VS activation have not yet been described. Here, we describe an approach that allows robust and reproducible measurement of gating-associated charge movements in Hv1. Gating currents reveal that VS activation and proton-selective aqueous conductance opening are thermodynamically distinct steps in the Hv1 activation pathway and show that pH changes directly alter VS activation. The availability of an assay for gating currents in Hv1 may aid future efforts to elucidate the molecular mechanisms of gating cooperativity, pH-dependent modulation, and H+ selectivity in a model VS domain protein.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/metabolismo , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos/química , Canales Iónicos/genética , Cinética , Mutación , Dominios Proteicos , Termodinámica
8.
Chemistry ; 24(11): 2758-2766, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29232020

RESUMEN

Buckminster fullerene (C60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C60 that inhibit the aggregation found in native γCD-C60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution.

10.
Angew Chem Int Ed Engl ; 55(45): 13974-13978, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27730718

RESUMEN

Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+ , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host-guest complexes in solution and contraction of the hydrogel.

11.
Chemistry ; 21(3): 1302-11, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25412901

RESUMEN

A poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] copolymer in combination with hydroxypropylated cyclodextrins has been demonstrated to lead to a supramolecular self-assembly process that results in the formation of kinetically trapped thermoresponsive nanoparticles. Selection of the cyclodextrin type provides control over the nanoparticle phase-transition thermodynamics, thus affording optical temperature sensors with an unprecedented, long-term thermal memory function, which is reversible or irreversible. This research also sheds light onto kinetic and dynamic supramolecular assemblies, thus providing important insight because similar supramolecular processes are at the foundation of living matter.


Asunto(s)
Polímeros/química , Ciclodextrinas/química , Luz , Nanopartículas/química , Polímeros/síntesis química , Dispersión de Radiación , Termodinámica , Temperatura de Transición
12.
Org Biomol Chem ; 13(10): 3048-57, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25621735

RESUMEN

A poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] random copolymer was synthesized and its thermoresponsive behavior in aqueous solution modulated by the addition of different supramolecular host molecules. The macrocycles formed inclusion complexes with the nonyl aliphatic side-chains present in the copolymer, increasing its cloud point temperature. The extent of this temperature shift was found to depend on the cavitand concentration and on the strength of the host-guest complexation. The cloud point temperature could be tuned in an unprecedented wide range of 30 K by supramolecular interactions. Since the temperature-induced breakage of the inclusion complexes constitutes the driving force for the copolymer phase transition, the shift in cloud point temperature could be utilized to estimate the association constant of the nonyl side chains with the cavitands.

13.
Int J Mol Sci ; 16(4): 7428-44, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25849653

RESUMEN

A series of water insoluble poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] amphiphilic copolymers was synthesized and their solubility properties in the presence of different supramolecular host molecules were investigated. The resulting polymer-cavitand assemblies exhibited a thermoresponsive behavior that could be modulated by variation of the copolymer composition and length. Interestingly, the large number of hydrophobic nonyl units across the polymer chain induced the formation of kinetically-trapped nanoparticles in solution. These nanoparticles further agglomerate into larger aggregates at a temperature that is dependent on the polymer composition and the cavitand type and concentration. The present research expands the understanding on the supramolecular interactions between water insoluble copolymers and supramolecular host molecules.


Asunto(s)
Oxazoles/química , Polímeros/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Solubilidad , Soluciones/química , Temperatura
14.
Angew Chem Int Ed Engl ; 54(47): 14085-9, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26404011

RESUMEN

There is an increasing need for smart materials capable of removing multivalent ions from aqueous streams without the inconvenience of brine regeneration as in ion-exchange processes. Herein, we present a thermoresponsive micellar system consisting of polystyrene-poly(methoxy diethyleneglycol acrylate) block copolymer surfactants modified with carboxylic acid end groups (PS-PMDEGA-COOH) that can be used to switch between the adsorption and desorption of divalent calcium(II) cations by a mild temperature trigger, thus providing a new type of thermoregenerable ion-adsorbing materials. The switch of calcium(II)-binding capacity is demonstrated to result from a shift in the pKa value of the carboxylic acid groups by the collapse and redissolution of the PMDEGA block and the associated change in local polarity.

15.
J Biol Chem ; 288(41): 29506-17, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23965996

RESUMEN

The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.


Asunto(s)
Membrana Celular/fisiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Activación del Canal Iónico/fisiología , Canales Catiónicos TRPV/metabolismo , Algoritmos , Animales , Membrana Celular/química , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Femenino , Células HEK293 , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/fisiología , Modelos Moleculares , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Multimerización de Proteína , Estructura Terciaria de Proteína , Ratas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Xenopus laevis
16.
J Mater Sci Mater Med ; 25(5): 1211-25, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23975334

RESUMEN

The conjunction of polymers and medicine enables the development of new materials that display novel features, opening new ways to administrate drugs, design implants and biosensors, to deliver pharmaceuticals impacting cancer treatment, regenerative medicine or gene therapy. Poly(2-oxazoline)s (POx) constitute a polymer class with exceptional properties for their use in a plethora of different biomedical applications and are proposed as a versatile platform for the development of new medicine. Herein, a global vision of POx as a platform for novel biomaterials is offered, by highlighting the recent advances and breakthroughs in this fascinating field.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Oxazoles/química , Prótesis e Implantes , Ingeniería de Tejidos/instrumentación , Animales , Humanos
17.
Angew Chem Int Ed Engl ; 53(20): 5044-8, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24711257

RESUMEN

A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host-guest interactions of poly(N-isopropylacrylamide) (PNIPAM) with side-chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST = lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM-CBPQT(4+) host-guest complex. When heated above the transition temperature, the polymer collapses, and the host-guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.


Asunto(s)
Polímeros , Termómetros , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta
18.
Biology (Basel) ; 13(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39056663

RESUMEN

Glucotoxicity may exert its deleterious effects on pancreatic ß-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. ß-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family. Two Cx genes have been identified in ß cells, Cx36 and Cx30.2. We have found evidence that the glucose concentration on its own is sufficient to regulate Cx30.2 gene expression in mouse islets. In this work, we examine the involvement of the Cx30.2 protein in the survival of ß cells (RIN-m5F). METHODS: RIN-m5F cells were cultured in 5 mM D-glucose (normal) or 30 mM D-glucose (high glucose) for 24 h. Cx30.2 siRNAs was used to downregulate Cx30.2 expression. Apoptosis was measured by means of TUNEL, an annexin V staining method, and the cleaved form of the caspase-3 protein was determined using Western blot. RESULTS: High glucose did not induce apoptosis in RIN-m5F ß cells after 24 h; interestingly, high glucose increased the Cx30.2 total protein levels. Moreover, this work found that the downregulation of Cx30.2 expression in high glucose promoted apoptosis in RIN-m5F cells. CONCLUSION: The data suggest that the upregulation of Cx30.2 protects ß cells from hyperglycemia-induced apoptosis. Furthermore, Cx30.2 may be a promising avenue of therapeutic investigation for the treatment of glucose metabolic disorders.

19.
ACS Appl Mater Interfaces ; 15(51): 59134-59144, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102079

RESUMEN

Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow "high-throughput" screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.


Asunto(s)
Micelas , Neoplasias , Humanos , Polímeros/química , Polietilenglicoles/química , Matriz Extracelular , Dispositivos Laboratorio en un Chip , Portadores de Fármacos/química
20.
Macromol Rapid Commun ; 33(9): 827-32, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22488670

RESUMEN

The ability of merging the properties of poly(2-oxazoline)s and poly(ethylene imine) is of high interest for various biomedical applications, including gene delivery, biosensors, and switchable surfaces and nanoparticles. In the present research, a methodology for the controlled and selective hydrolysis of (co)poly(2-oxazoline)s is developed in an ethanol-water solvent mixture, opening the path toward a wide range of block poly(2-oxazoline-co-ethylene imine) (POx-PEI) copolymers with tunable properties. The unexpected influence of the selected ethanol-water binary solvent mixture on the hydrolysis kinetics and selectivity is highlighted in the pursue of well-defined POx-PEI block copolymers.


Asunto(s)
Iminas/síntesis química , Oxazoles/química , Poliaminas/química , Polietilenos/síntesis química , Polímeros/química , Etanol/química , Hidrólisis , Iminas/química , Cinética , Polietilenos/química , Solventes/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA