Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
RNA ; 20(2): 133-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24327750

RESUMEN

Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.


Asunto(s)
Proteínas F-Box/metabolismo , Transporte de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Proteínas F-Box/genética , Técnicas de Inactivación de Genes , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitinación
2.
J Biol Chem ; 288(14): 9619-9633, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23417674

RESUMEN

H2B ubiquitylation is carried out by Bre1p, an E3 ligase, along with an E2 conjugase, Rad6p. H2B ubiquitylation has been previously implicated in promoting the association of RNA polymerase II with the coding sequence of the active GAL1 gene, and hence transcriptional elongation. Intriguingly, we find here that the association of RNA polymerase II with the active GAL1 coding sequence is not decreased in Δbre1, although it is required for H2B ubiquitylation. In contrast, the loss of Rad6p significantly impairs the association of RNA polymerase II with GAL1. Likewise, the point mutation of lysine 123 (ubiquitylation site) to arginine of H2B (H2B-K123R) also lowers the association of RNA polymerase II with GAL1, consistent with the role of H2B ubiquitylation in promoting RNA polymerase II association. Surprisingly, unlike the Δrad6 and H2B-K123R strains, complete deletion of BRE1 does not impair the association of RNA polymerase II with GAL1. However, deletion of the RING domain of Bre1p (that is essential for H2B ubiquitylation) impairs RNA polymerase II association with GAL1. These results imply that a non-RING domain of Bre1p counteracts the stimulatory role of the RING domain in regulating the association of RNA polymerase II with GAL1, and hence RNA polymerase II occupancy is not impaired in Δbre1. Consistently, GAL1 transcription is impaired in the absence of the RING domain of Bre1p, but not in Δbre1. Similar results are also obtained at other genes. Collectively, our results implicate both the stimulatory and repressive roles of Bre1p in regulation of RNA polymerase II association with active genes (and hence transcription) in vivo.


Asunto(s)
Histonas/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Inmunoprecipitación de Cromatina , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación , Proteínas Nucleares/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719837

RESUMEN

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Asunto(s)
Cadmio , Unión Proteica , Proteínas Ligasas SKP Cullina F-box , Cadmio/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Dominios Proteicos , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
4.
Mol Cell Biol ; 44(10): 429-442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135477

RESUMEN

Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18ß with CENP-A specific chaperone HJURP. Cellular levels of Mis18ß are regulated by ß-transducin repeat containing protein (ß-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in ß-TrCP-mediated proteolysis of Mis18ß contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in ß-TrCP depleted cells is dependent on high levels of Mis18ß as depletion of Mis18ß suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18ß alone. In summary, our results show that ß-TrCP-mediated degradation of Mis18ß prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18ß may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.


Asunto(s)
Proteínas de Ciclo Celular , Proteína A Centromérica , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona , Proteolisis , Proteínas con Repetición de beta-Transducina , Humanos , Proteínas Adaptadoras Transductoras de Señales , Autoantígenos/metabolismo , Autoantígenos/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Línea Celular Tumoral , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Nucleic Acids Res ; 39(6): 2188-209, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21075799

RESUMEN

The cap-binding complex (CBC) binds to the cap structure of mRNA to protect it from exonucleases as well as to regulate downstream post-transcriptional events, translational initiation and nonsense-mediated mRNA decay. However, its role in regulation of the upstream transcriptional events such as initiation or elongation remains unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay in conjunction with transcriptional, mutational and co-immunoprecipitational analyses, we show that CBC is recruited to the body of yeast gene, and then stimulates the formation of pre-initiation complex (PIC) at several yeast promoters through its interaction with Mot1p (modifier of transcription). Mot1p is recruited to these promoters, and enhances the PIC formation. We find that CBC promotes the recruitment of Mot1p which subsequently stimulates PIC formation at these promoters. Furthermore, the formation of PIC is essential for recruitment of CBC. Thus, our study presents an interesting observation that an mRNA binding factor exhibits a reciprocal synergistic effect on formation of PIC (and hence transcriptional initiation) at the promoter, revealing a new pathway of eukaryotic gene regulation in vivo.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Regulación Fúngica de la Expresión Génica , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Galactoquinasa/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
6.
Biochemistry ; 51(2): 706-14, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22224423

RESUMEN

Although Sgf29p has been biochemically implicated as a component of SAGA (Spt-Ada-Gcn5 acetyltransferase), its precise mechanism of action in transcription is not clearly understood in vivo. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation (ChIP) assay in conjunction with transcriptional and mutational analyses, we show that Sgf29p along with other SAGA components is recruited to the upstream activating sequence (UAS) of a SAGA-regulated gene, GAL1, in an activation domain-dependent manner. However, Sgf29p does not alter the recruitment of Spt20p that maintains the overall structural and functional integrity of SAGA. The recruitment of other SAGA components such as TAF10p, TAF12p, and Ubp8p to the GAL1 UAS is also not altered in the absence of Sgf29p. Interestingly, we find that the recruitment of TBP (TATA box binding protein that nucleates the assembly of general transcription factors to form the preinitiation complex for transcriptional initiation) to the core promoter of GAL1 is weakened in Δsgf29. Likewise, Sgf29p also enhances the recruitment of TBP to other SAGA-regulated promoters. Such weakening of recruitment of TBP to these promoters subsequently decreases the level of transcription. Taken together, these results support the idea that SAGA-associated Sgf29p facilitates the recruitment of TBP (and hence transcription) without altering the global structural integrity of SAGA in vivo.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína de Unión a TATA-Box/metabolismo , Acetilación , Inmunoprecipitación de Cromatina , Análisis Mutacional de ADN , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
7.
Nucleic Acids Res ; 38(5): 1461-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20007604

RESUMEN

Rad26p, a yeast homologue of human Cockayne syndrome B with an ATPase activity, plays a pivotal role in stimulating DNA repair at the coding sequences of active genes. On the other hand, DNA repair at inactive genes or silent areas of the genome is not regulated by Rad26p. However, how Rad26p recognizes DNA lesions at the actively transcribing genes to facilitate DNA repair is not clearly understood in vivo. Here, we show that Rad26p associates with the coding sequences of genes in a transcription-dependent manner, but independently of DNA lesions induced by 4-nitroquinoline-1-oxide in Saccharomyces cerevisiae. Further, histone H3 lysine 36 methylation that occurs at the active coding sequence stimulates the recruitment of Rad26p. Intriguingly, we find that Rad26p is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner. However, Rad26p does not recognize DNA lesions in the absence of active transcription. Together, these results provide an important insight as to how Rad26p is delivered to the damage sites at the active, but not inactive, genes to stimulate repair in vivo, shedding much light on the early steps of transcription-coupled repair in living eukaryotic cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Daño del ADN , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Sitios de Unión , Histonas/química , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
8.
Cell Chem Biol ; 29(9): 1381-1395.e13, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948006

RESUMEN

The tumor suppressor p53 is the most frequently mutated protein in human cancer. The majority of these mutations are missense mutations in the DNA binding domain of p53. Restoring p53 tumor suppressor function could have a major impact on the therapy for a wide range of cancers. Here we report a virtual screening approach that identified several small molecules with p53 reactivation activities. The UCI-LC0023 compound series was studied in detail and was shown to bind p53, induce a conformational change in mutant p53, restore the ability of p53 hotspot mutants to associate with chromatin, reestablish sequence-specific DNA binding of a p53 mutant in a reconstituted in vitro system, induce p53-dependent transcription programs, and prevent progression of tumors carrying mutant p53, but not p53null or p53WT alleles. Our study demonstrates feasibility of a computation-guided approach to identify small molecule corrector drugs for p53 hotspot mutations.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Cromatina , ADN , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Dominios Proteicos , Proteína p53 Supresora de Tumor/metabolismo
9.
J Biol Chem ; 285(40): 30472-9, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20668333

RESUMEN

Rtt109p, a histone acetyltransferase, associates with active genes and acetylates lysine 56 on histone H3 in Saccharomyces cerevisiae. However, the functional role of Rtt109p or H3 Lys(56) acetylation in chromatin assembly/disassembly (and hence gene expression) immediately switching transcription on or off has not been clearly elucidated in vivo. Here, we show that Rtt109p promotes the eviction of histone H3 from a fast inducible yeast gene, GAL1, following transcriptional initiation via histone H3 Lys(56) acetylation. Conversely, the deposition of histone H3 to GAL1 is significantly decreased in the presence of Rtt109p following transcriptional termination. Intriguingly, we also find that the deposition of histone H2B on preexisting non-acetylated histone H3 Lys(56) at GAL1 in Δrtt109 is significantly increased independently of histone H3 deposition immediately following transcriptional termination subsequent to a short induction. Consistently, histone H2B is not efficiently evicted from GAL1 in the absence of Rtt109p immediately following transcriptional induction. Furthermore, we show that the stimulated eviction or reduced deposition of histones by Rtt109p promotes the association of RNA polymerase II with GAL1 and hence the synthesis of GAL1 mRNA. These results, taken together, support the fact that Rtt109p regulates the deposition/eviction of histone H2B in addition to its role in stimulating histone H3 eviction, thus providing insight into chromatin assembly/disassembly and hence gene expression in vivo.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología , Acetilación , Galactoquinasa/biosíntesis , Galactoquinasa/genética , Histona Acetiltransferasas , Histonas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 40(7)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31932480

RESUMEN

Although an F-box protein, Mdm30, is found to regulate ubiquitylation of the Sub2 component of TREX (transcription-export) complex for proteasomal degradation in stimulation of mRNA export, it remains unknown whether such ubiquitin-proteasome system (UPS) regulation of Sub2 occurs cotranscriptionally via its interaction with Mdm30. Further, it is unclear whether impaired UPS regulation of Sub2 in the absence of Mdm30 alters mRNA export via splicing defects of export factors and/or mitochondrial dynamics/function, since Sub2 controls mRNA splicing and Mdm30 regulates mitochondrial aggregation. Here, we show that Mdm30 interacts with Sub2, and temporary shutdown of Mdm30 enhances Sub2's abundance and impairs mRNA export. Likewise, Sub2's abundance is increased following transcriptional inhibition. These results support Mdm30's direct role in regulation of Sub2's cellular abundance in a transcription-dependent manner. Consistently, the chromatin-bound Sub2 level is increased in the absence of Mdm30. Further, we find that Mdm30 does not facilitate splicing of export factors. Moreover, Mdm30 does not have a dramatic effect on mitochondrial respiration/function, and mRNA export occurs in the absence of Fzo1, which is required for mitochondrial dynamics/respiration. Collective results reveal that Mdm30 interacts with Sub2 for proteasomal degradation in a transcription-dependent manner to promote mRNA export independently of splicing or mitochondrial function, thus advancing our understanding of mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas F-Box/metabolismo , Mitocondrias/fisiología , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Empalme del ARN , Transporte de ARN , ARN Mensajero/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Ubiquitinación
11.
RNA Biol ; 6(5): 531-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19838077

RESUMEN

The export of mRNA from nucleus to cytoplasm is a key regulatory step in the expression of RNA polymerase II genes in eukaryotes, and thus, a variety of human diseases are manifested by abnormal mRNA export. Therefore, a large number of studies over many years have been directed towards elucidating the regulatory mechanisms of mRNA export. These studies have identified several mRNA export-associated factors and delineated their regulatory networks. Intriguingly, mRNA export has also been shown to be regulated by ubiquitylation, a post-translational modification that targets proteins for degradation or transport and has been linked to different cellular processes such as cell cycle progression, DNA repair, transcription and intracellular trafficking. While the mechanisms of actions of ubiquitylation in different cellular processes are relatively well-established, it is not clearly understood how mRNA export is regulated by ubiquitylation. Here, we highlight the recent advances of mRNA export and its regulation by ubiquitylation or the enzymes controlling this posttranslational modification.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , ARN Mensajero/metabolismo , Ubiquitinación/fisiología , Humanos , ARN Polimerasa II/metabolismo
12.
Biomolecules ; 4(3): 827-47, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25211636

RESUMEN

Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Iniciación de la Transcripción Genética , Humanos , Activación Transcripcional
13.
Genetics ; 196(1): 161-76, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24172134

RESUMEN

Yeast mRNA 5'-triphosphatase, Cet1p, recognizes phosphorylated-RNA polymerase II as a component of capping machinery via Ceg1p for cotranscriptional formation of mRNA cap structure that recruits cap-binding complex (CBC) and protects mRNA from exonucleases. Here, we show that the accumulation of RNA polymerase II at the promoter proximal site of ADH1 is significantly enhanced in the absence of Cet1p. Similar results are also found at other genes. Cet1p is recruited to the 5' end of the coding sequence, and its absence impairs mRNA capping, and hence CBC recruitment. However, such an impaired recruitment of CBC does not enhance promoter proximal accumulation of RNA polymerase II. Thus, Cet1p specifically lowers the accumulation of RNA polymerase II at the promoter proximal site independently of mRNA cap structure or CBC. Further, we show that Cet1p's N-terminal domain, which is not involved in mRNA capping, decreases promoter proximal accumulation of RNA polymerase II. An accumulation of RNA polymerase II at the promoter proximal site in the absence of Cet1p's N-terminal domain is correlated with reduced transcription. Collectively, our results demonstrate a novel role of Cet1p in regulation of promoter proximal accumulation of RNA polymerase II independently of mRNA capping activity, and hence transcription in vivo.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Alcohol Deshidrogenasa/genética , Caperuzas de ARN/biosíntesis , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Quinasa 1 de Adhesión Focal/genética , Fosforilación , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína/genética , Proteínas de Unión a Caperuzas de ARN , ARN Polimerasa II/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética , Transcripción Genética
14.
J Mol Biol ; 426(16): 2928-2941, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-24911582

RESUMEN

Sus1p is a common component of transcriptional co-activator, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and mRNA export complex, TREX-2 (Transcription-export 2), and is involved in promoting transcription and mRNA export. However, it is not clearly understood how Sus1p promotes transcription. Here, we show that Sus1p is predominantly recruited to the upstream activating sequence of a SAGA-dependent gene, GAL1, under transcriptionally active conditions as a component of SAGA to promote the formation of pre-initiation complex (PIC) at the core promoter and, consequently, transcriptional initiation. Likewise, Sus1p promotes the PIC formation at other SAGA-dependent genes and hence transcriptional initiation. Such function of Sus1p in promoting PIC formation and transcriptional initiation is not mediated via its role in regulation of SAGA's histone H2B de-ubiquitylation activity. However, Sus1p's function in regulation of histone H2B ubiquitylation is associated with transcriptional elongation, DNA repair and replication. Collectively, our results support that Sus1p promotes PIC formation (and hence transcriptional initiation) at the SAGA-regulated genes independently of histone H2B de-ubiquitylation and further controls transcriptional elongation, DNA repair and replication via orchestration of histone H2B ubiquitylation, thus providing distinct functional insights of Sus1p in regulation of DNA transacting processes.


Asunto(s)
Replicación del ADN , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Ubiquitina/metabolismo , Inmunoprecipitación de Cromatina , Daño del ADN/genética , Reparación del ADN/genética , ADN de Hongos/genética , Galactoquinasa , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transcripción Genética , Activación Transcripcional , Ubiquitinación
15.
Mol Cell Biol ; 33(18): 3549-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836882

RESUMEN

In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3' end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Iniciación de la Transcripción Genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Complejo Mediador/metabolismo , Mutación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
16.
J Mol Biol ; 389(2): 238-47, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19376128

RESUMEN

Mdm30p, a nucleus-encoded F-box protein, which binds to the substrate for ubiquitin-mediated proteolysis, is involved in maintenance of fusion-competent mitochondria for various cellular functions. Recently, Mdm30p has been implicated in regulation of gene expression. However, its mode of action in gene regulation is not clearly known in vivo. With this view, we have systematically analyzed here the role of Mdm30p in regulation of transcriptional initiation, elongation, mRNA processing, and export in Saccharomyces cerevisiae, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay in conjunction with RT-PCR and fluorescence in situ hybridization. We show that Mdm30p is dispensable for formation of the preinitiation complex assembly, association of elongating RNA polymerase II, and recruitment of mRNA capping enzyme, cap-binding complex, and 3' end formation machinery at the transcriptionally active genes such as ADH1, PHO84, and RPS5. Intriguingly, we find that Mdm30p facilitates the recruitment of the transcription-export complex at these genes. Consistently, the export of mRNAs of these genes is significantly impaired in the absence of Mdm30p as revealed by fluorescence in situ hybridization and RT-PCR analysis of cytoplasmic mRNA. However, such an impaired mRNA export is not dependent on mitochondrial fusion, as the deletion of FZO1, an essential gene for mitochondrial fusion, does not alter the export of ADH1, PHO84, and RPS5 mRNAs. Together, our data demonstrate that Mdm30p selectively controls mRNA export independently of mitochondrial fusion, revealing a novel function of an F-box protein in mRNA export.


Asunto(s)
Proteínas F-Box/fisiología , Transporte de ARN , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética , Proteínas F-Box/genética , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA