Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2216522120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279274

RESUMEN

During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.


Asunto(s)
Malaria Vivax , Malaria , Parásitos , Plasmodium , Humanos , Ratones , Animales , Interacciones Huésped-Parásitos , Malaria/parasitología , Plasmodium/genética
2.
PLoS Comput Biol ; 18(10): e1010145, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215333

RESUMEN

Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small "core" network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Redes Reguladoras de Genes/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
BMC Bioinformatics ; 23(1): 94, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300586

RESUMEN

BACKGROUND: Cell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15 to 80% of the genome despite performing distinct functions. In each case, these large periodic transcriptional programs are controlled by gene regulatory networks (GRNs), and it has been shown through genetics and chromosome mapping approaches in model systems that at the core of these GRNs are small sets of genes that drive the transcript dynamics of the GRNs. However, it is unlikely that we have identified all of these core genes, even in model organisms. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming, or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available. RESULTS: This study shows that a unified set of quantified dynamic features of high-throughput time series gene expression data are more prominent in the core transcriptional regulators of cell and circadian cycles than in their outputs, in multiple organism, even in the presence of external periodic stimuli. Additionally, we observe that the power to discriminate between core and non-core genes is largely insensitive to the particular choice of quantification of these features. CONCLUSIONS: There are practical applications of the approach presented in this study for network inference, since the result is a ranking of genes that is enriched for core regulatory elements driving a periodic phenotype. In this way, the method provides a prioritization of follow-up genetic experiments. Furthermore, these findings reveal something unexpected-that there are shared dynamic features of the transcript abundance of core components of unrelated GRNs that control disparate periodic phenotypes.


Asunto(s)
Ritmo Circadiano , Redes Reguladoras de Genes , Elementos Reguladores de la Transcripción , Fenómenos Biológicos , Genoma , Factores de Transcripción/metabolismo
4.
Bioinformatics ; 38(1): 44-51, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34415301

RESUMEN

MOTIVATION: Accurate automatic annotation of protein function relies on both innovative models and robust datasets. Due to their importance in biological processes, the identification of DNA-binding proteins directly from protein sequence has been the focus of many studies. However, the datasets used to train and evaluate these methods have suffered from substantial flaws. We describe some of the weaknesses of the datasets used in previous DNA-binding protein literature and provide several new datasets addressing these problems. We suggest new evaluative benchmark tasks that more realistically assess real-world performance for protein annotation models. We propose a simple new model for the prediction of DNA-binding proteins and compare its performance on the improved datasets to two previously published models. In addition, we provide extensive tests showing how the best models predict across taxa. RESULTS: Our new gradient boosting model, which uses features derived from a published protein language model, outperforms the earlier models. Perhaps surprisingly, so does a baseline nearest neighbor model using BLAST percent identity. We evaluate the sensitivity of these models to perturbations of DNA-binding regions and control regions of protein sequences. The successful data-driven models learn to focus on DNA-binding regions. When predicting across taxa, the best models are highly accurate across species in the same kingdom and can provide some information when predicting across kingdoms. AVAILABILITY AND IMPLEMENTATION: The data and results for this article can be found at https://doi.org/10.5281/zenodo.5153906. The code for this article can be found at https://doi.org/10.5281/zenodo.5153683. The code, data and results can also be found at https://github.com/AZaitzeff/tools_for_dna_binding_proteins.


Asunto(s)
Proteínas de Unión al ADN , ADN , Proteínas de Unión al ADN/genética , Secuencia de Aminoácidos , Anotación de Secuencia Molecular
5.
MMWR Morb Mortal Wkly Rep ; 69(46): 1743-1747, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33211678

RESUMEN

On university campuses and in similar congregate environments, surveillance testing of asymptomatic persons is a critical strategy (1,2) for preventing transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). All students at Duke University, a private research university in Durham, North Carolina, signed the Duke Compact (3), agreeing to observe mandatory masking, social distancing, and participation in entry and surveillance testing. The university implemented a five-to-one pooled testing program for SARS-CoV-2 using a quantitative, in-house, laboratory-developed, real-time reverse transcription-polymerase chain reaction (RT-PCR) test (4,5). Pooling of specimens to enable large-scale testing while minimizing use of reagents was pioneered during the human immunodeficiency virus pandemic (6). A similar methodology was adapted for Duke University's asymptomatic testing program. The baseline SARS-CoV-2 testing plan was to distribute tests geospatially and temporally across on- and off-campus student populations. By September 20, 2020, asymptomatic testing was scaled up to testing targets, which include testing for residential undergraduates twice weekly, off-campus undergraduates one to two times per week, and graduate students approximately once weekly. In addition, in response to newly identified positive test results, testing was focused in locations or within cohorts where data suggested an increased risk for transmission. Scale-up over 4 weeks entailed redeploying staff members to prepare 15 campus testing sites for specimen collection, developing information management tools, and repurposing laboratory automation to establish an asymptomatic surveillance system. During August 2-October 11, 68,913 specimens from 10,265 graduate and undergraduate students were tested. Eighty-four specimens were positive for SARS-CoV-2, and 51% were among persons with no symptoms. Testing as a result of contact tracing identified 27.4% of infections. A combination of risk-reduction strategies and frequent surveillance testing likely contributed to a prolonged period of low transmission on campus. These findings highlight the importance of combined testing and contact tracing strategies beyond symptomatic testing, in association with other preventive measures. Pooled testing balances resource availability with supply-chain disruptions, high throughput with high sensitivity, and rapid turnaround with an acceptable workload.


Asunto(s)
Enfermedades Asintomáticas/epidemiología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Vigilancia en Salud Pública/métodos , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Humanos , North Carolina/epidemiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Desarrollo de Programa , SARS-CoV-2 , Universidades , Carga Viral
6.
Mol Cell ; 45(5): 669-79, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22306294

RESUMEN

During embryonic cell cycles, B-cyclin-CDKs function as the core component of an autonomous oscillator. Current models for the cell-cycle oscillator in nonembryonic cells are slightly more complex, incorporating multiple G1, S phase, and mitotic cyclin-CDK complexes. However, periodic events persist in yeast cells lacking all S phase and mitotic B-cyclin genes, challenging the assertion that cyclin-CDK complexes are essential for oscillations. These and other results led to the proposal that a network of sequentially activated transcription factors functions as an underlying cell-cycle oscillator. Here we examine the individual contributions of a transcription factor network and cyclin-CDKs to the maintenance of cell-cycle oscillations. Our findings suggest that while cyclin-CDKs are not required for oscillations, they do contribute to oscillation robustness. A model emerges in which cyclin expression (thereby, CDK activity) is entrained to an autonomous transcriptional oscillator. CDKs then modulate oscillator function and serve as effectors of the oscillator.


Asunto(s)
Ciclo Celular/genética , Quinasas Ciclina-Dependientes/fisiología , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/fisiología , Levaduras/citología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/enzimología , Levaduras/genética
7.
J Math Biol ; 80(5): 1523-1557, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32008103

RESUMEN

Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error [Formula: see text] by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that [Formula: see text]-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level [Formula: see text]. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589-1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.


Asunto(s)
Modelos Biológicos , Algoritmos , Causalidad , Ciclo Celular/genética , Biología Computacional , Bases de Datos Factuales/estadística & datos numéricos , Redes Reguladoras de Genes , Análisis de Series de Tiempo Interrumpido/estadística & datos numéricos , Modelos Lineales , Conceptos Matemáticos , Modelos Genéticos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Relación Señal-Ruido , Factores de Tiempo
8.
PLoS Genet ; 12(12): e1006453, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27918582

RESUMEN

The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation.


Asunto(s)
Proliferación Celular/genética , Evolución Molecular , Proteínas Fúngicas/biosíntesis , Transcripción Genética , Ciclo Celular/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes/genética , Variación Genética , Humanos , Mitosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
9.
Curr Genet ; 63(5): 803-811, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28265742

RESUMEN

Proliferation and host evasion are critical processes to understand at a basic biological level for improving infectious disease treatment options. The human fungal pathogen Cryptococcus neoformans causes fungal meningitis in immunocompromised individuals by proliferating in cerebrospinal fluid. Current antifungal drugs target "virulence factors" for disease, such as components of the cell wall and polysaccharide capsule in C. neoformans. However, mechanistic links between virulence pathways and the cell cycle are not as well studied. Recently, cell-cycle synchronized C. neoformans cells were profiled over time to identify gene expression dynamics (Kelliher et al., PLoS Genet 12(12):e1006453, 2016). Almost 20% of all genes in the C. neoformans genome were periodically activated during the cell cycle in rich media, including 40 genes that have previously been implicated in virulence pathways. Here, we review important findings about cell-cycle-regulated genes in C. neoformans and provide two examples of virulence pathways-chitin synthesis and G-protein coupled receptor signaling-with their putative connections to cell division. We propose that a "comparative functional genomics" approach, leveraging gene expression timing during the cell cycle, orthology to genes in other fungal species, and previous experimental findings, can lead to mechanistic hypotheses connecting the cell cycle to fungal virulence.


Asunto(s)
Ciclo Celular , Criptococosis/microbiología , Cryptococcus neoformans/fisiología , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Quitina/biosíntesis , Redes Reguladoras de Genes , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Virulencia/genética , Factores de Virulencia/genética
10.
Proc Natl Acad Sci U S A ; 110(10): E968-77, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23388635

RESUMEN

Due to cell-to-cell variability and asymmetric cell division, cells in a synchronized population lose synchrony over time. As a result, time-series measurements from synchronized cell populations do not reflect the underlying dynamics of cell-cycle processes. Here, we present a branching process deconvolution algorithm that learns a more accurate view of dynamic cell-cycle processes, free from the convolution effects associated with imperfect cell synchronization. Through wavelet-basis regularization, our method sharpens signal without sharpening noise and can remarkably increase both the dynamic range and the temporal resolution of time-series data. Although applicable to any such data, we demonstrate the utility of our method by applying it to a recent cell-cycle transcription time course in the eukaryote Saccharomyces cerevisiae. Our method more sensitively detects cell-cycle-regulated transcription and reveals subtle timing differences that are masked in the original population measurements. Our algorithm also explicitly learns distinct transcription programs for mother and daughter cells, enabling us to identify 82 genes transcribed almost entirely in early G1 in a daughter-specific manner.


Asunto(s)
Ciclo Celular/genética , Ciclo Celular/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Algoritmos , Fase G1/genética , Fase G1/fisiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Modelos Genéticos , Saccharomyces cerevisiae/fisiología , Biología de Sistemas , Transcripción Genética , Transcriptoma
11.
Bioinformatics ; 29(24): 3174-80, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24058056

RESUMEN

MOTIVATION: To discover and study periodic processes in biological systems, we sought to identify periodic patterns in their gene expression data. We surveyed a large number of available methods for identifying periodicity in time series data and chose representatives of different mathematical perspectives that performed well on both synthetic data and biological data. Synthetic data were used to evaluate how each algorithm responds to different curve shapes, periods, phase shifts, noise levels and sampling rates. The biological datasets we tested represent a variety of periodic processes from different organisms, including the cell cycle and metabolic cycle in Saccharomyces cerevisiae, circadian rhythms in Mus musculus and the root clock in Arabidopsis thaliana. RESULTS: From these results, we discovered that each algorithm had different strengths. Based on our findings, we make recommendations for selecting and applying these methods depending on the nature of the data and the periodic patterns of interest. Additionally, these results can also be used to inform the design of large-scale biological rhythm experiments so that the resulting data can be used with these algorithms to detect periodic signals more effectively.


Asunto(s)
Algoritmos , Ciclo Celular/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Biología Computacional , Redes y Vías Metabólicas , Reconocimiento de Normas Patrones Automatizadas , Animales , Arabidopsis/genética , Ciclo Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae/genética
12.
Nature ; 453(7197): 944-7, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18463633

RESUMEN

A significant fraction of the Saccharomyces cerevisiae genome is transcribed periodically during the cell division cycle, indicating that properly timed gene expression is important for regulating cell-cycle events. Genomic analyses of the localization and expression dynamics of transcription factors suggest that a network of sequentially expressed transcription factors could control the temporal programme of transcription during the cell cycle. However, directed studies interrogating small numbers of genes indicate that their periodic transcription is governed by the activity of cyclin-dependent kinases (CDKs). To determine the extent to which the global cell-cycle transcription programme is controlled by cyclin-CDK complexes, we examined genome-wide transcription dynamics in budding yeast mutant cells that do not express S-phase and mitotic cyclins. Here we show that a significant fraction of periodic genes are aberrantly expressed in the cyclin mutant. Although cells lacking cyclins are blocked at the G1/S border, nearly 70% of periodic genes continued to be expressed periodically and on schedule. Our findings reveal that although CDKs have a function in the regulation of cell-cycle transcription, they are not solely responsible for establishing the global periodic transcription programme. We propose that periodic transcription is an emergent property of a transcription factor network that can function as a cell-cycle oscillator independently of, and in tandem with, the CDK oscillator.


Asunto(s)
Relojes Biológicos/fisiología , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Ciclinas/metabolismo , Fase G1 , Mutación/genética , Periodicidad , Fase S , Factores de Tiempo
13.
Math Biosci ; 367: 109102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939998

RESUMEN

Modeling biological systems holds great promise for speeding up the rate of discovery in systems biology by predicting experimental outcomes and suggesting targeted interventions. However, this process is dogged by an identifiability issue, in which network models and their parameters are not sufficiently constrained by coarse and noisy data to ensure unique solutions. In this work, we evaluated the capability of a simplified yeast cell-cycle network model to reproduce multiple observed transcriptomic behaviors under genomic mutations. We matched time-series data from both cycling and checkpoint arrested cells to model predictions using an asynchronous multi-level Boolean approach. We showed that this single network model, despite its simplicity, is capable of exhibiting dynamical behavior similar to the datasets in most cases, and we demonstrated the drop in severity of the identifiability issue that results from matching multiple datasets.


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Ciclo Celular/genética , División Celular , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Biología de Sistemas
14.
PLoS Genet ; 6(5): e1000935, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20463882

RESUMEN

Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCF(Cdc4) ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APC(Cdh1)). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCF(Cdc4) target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Ciclina B/genética , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares/genética , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética
15.
Nat Commun ; 14(1): 3148, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37253722

RESUMEN

A major challenge in biotechnology and biomanufacturing is the identification of a set of biomarkers for perturbations and metabolites of interest. Here, we develop a data-driven, transcriptome-wide approach to rank perturbation-inducible genes from time-series RNA sequencing data for the discovery of analyte-responsive promoters. This provides a set of biomarkers that act as a proxy for the transcriptional state referred to as cell state. We construct low-dimensional models of gene expression dynamics and rank genes by their ability to capture the perturbation-specific cell state using a novel observability analysis. Using this ranking, we extract 15 analyte-responsive promoters for the organophosphate malathion in the underutilized host organism Pseudomonas fluorescens SBW25. We develop synthetic genetic reporters from each analyte-responsive promoter and characterize their response to malathion. Furthermore, we enhance malathion reporting through the aggregation of the response of individual reporters with a synthetic consortium approach, and we exemplify the library's ability to be useful outside the lab by detecting malathion in the environment. The engineered host cell, a living malathion sensor, can be optimized for use in environmental diagnostics while the developed machine learning tool can be applied to discover perturbation-inducible gene expression systems in the compendium of host organisms.


Asunto(s)
Malatión , Transcriptoma , Transcriptoma/genética , Malatión/farmacología , Regiones Promotoras Genéticas/genética , Secuencia de Bases
16.
J Vis Exp ; (196)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358275

RESUMEN

Investigating the cell cycle often depends on synchronizing cell populations to measure various parameters in a time series as the cells traverse the cell cycle. However, even under similar conditions, replicate experiments display differences in the time required to recover from synchrony and to traverse the cell cycle, thus preventing direct comparisons at each time point. The problem of comparing dynamic measurements across experiments is exacerbated in mutant populations or in alternative growth conditions that affect the synchrony recovery time and/or the cell-cycle period. We have previously published a parametric mathematical model named Characterizing Loss of Cell Cycle Synchrony (CLOCCS) that monitors how synchronous populations of cells release from synchrony and progress through the cell cycle. The learned parameters from the model can then be used to convert experimental time points from synchronized time-series experiments into a normalized time scale (lifeline points). Rather than representing the elapsed time in minutes from the start of the experiment, the lifeline scale represents the progression from synchrony to cell-cycle entry and then through the phases of the cell cycle. Since lifeline points correspond to the phase of the average cell within the synchronized population, this normalized time scale allows for direct comparisons between experiments, including those with varying periods and recovery times. Furthermore, the model has been used to align cell-cycle experiments between different species (e.g., Saccharomyces cerevisiae and Schizosaccharomyces pombe), thus enabling direct comparison of cell-cycle measurements, which may reveal evolutionary similarities and differences.


Asunto(s)
Saccharomyces cerevisiae , Schizosaccharomyces , Factores de Tiempo , División Celular , Ciclo Celular , Saccharomyces cerevisiae/genética
17.
Synth Biol (Oxf) ; 8(1): ysad005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073283

RESUMEN

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.

18.
BMC Bioinformatics ; 13 Suppl 5: S5, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22537009

RESUMEN

BACKGROUND: Gradual or sudden transitions among different states as exhibited by cell populations in a biological sample under particular conditions or stimuli can be detected and profiled by flow cytometric time course data. Often such temporal profiles contain features due to transient states that present unique modeling challenges. These could range from asymmetric non-Gaussian distributions to outliers and tail subpopulations, which need to be modeled with precision and rigor. RESULTS: To ensure precision and rigor, we propose a parametric modeling framework StateProfiler based on finite mixtures of skew t-Normal distributions that are robust against non-Gaussian features caused by asymmetry and outliers in data. Further, we present in StateProfiler a new greedy EM algorithm for fast and optimal model selection. The parsimonious approach of our greedy algorithm allows us to detect the genuine dynamic variation in the key features as and when they appear in time course data. We also present a procedure to construct a well-fitted profile by merging any redundant model components in a way that minimizes change in entropy of the resulting model. This allows precise profiling of unusually shaped distributions and less well-separated features that may appear due to cellular heterogeneity even within clonal populations. CONCLUSIONS: By modeling flow cytometric data measured over time course and marker space with StateProfiler, specific parametric characteristics of cellular states can be identified. The parameters are then tested statistically for learning global and local patterns of spatio-temporal change. We applied StateProfiler to identify the temporal features of yeast cell cycle progression based on knockout of S-phase triggering cyclins Clb5 and Clb6, and then compared the S-phase delay phenotypes due to differential regulation of the two cyclins. We also used StateProfiler to construct the temporal profile of clonal divergence underlying lineage selection in mammalian hematopoietic progenitor cells.


Asunto(s)
Ciclo Celular , Citometría de Flujo , Saccharomyces cerevisiae/citología , Algoritmos , Ciclina B/metabolismo , Distribución Normal , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Bioinformatics ; 27(13): i295-303, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21685084

RESUMEN

MOTIVATION: To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been developed to use these valuable data sources in estimating how a population of cells progresses through the cell cycle. Furthermore, existing methods are designed to handle only a single binary marker of cell cycle progression at a time. Consequently, they cannot facilitate comparison of experiments involving different sets of markers. RESULTS: Here, we develop a new sampling model to accommodate an arbitrary number of different binary markers that characterize the progression of a population of dividing cells along a branching process. We engineer a strain of Saccharomyces cerevisiae with fluorescently labeled markers of cell cycle progression, and apply our new model to two image datasets we collected from the strain, as well as an independent dataset of different markers. We use our model to estimate the duration of post-cytokinetic attachment between a S.cerevisiae mother and daughter cell. The Java implementation is fast and extensible, and includes a graphical user interface. Our model provides a powerful and flexible cell cycle analysis tool, suitable to any type or combination of binary markers. AVAILABILITY: The software is available from: http://www.cs.duke.edu/~amink/software/cloccs/. CONTACT: michael.mayhew@duke.edu; amink@cs.duke.edu.


Asunto(s)
Ciclo Celular , Modelos Biológicos , Saccharomyces cerevisiae/citología , Programas Informáticos , Biomarcadores/análisis
20.
Sci Total Environ ; 835: 155401, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35469858

RESUMEN

Wastewater-based SARS-CoV-2 surveillance on college campuses has the ability to detect individual clinical COVID-19 cases at the building-level. High concordance of wastewater results and clinical cases has been observed when calculated over a time window of four days or longer and in settings with high incidence of infection. At Duke University, twice a week clinical surveillance of all resident undergraduates was carried out in the spring 2021 semester. We conducted simultaneous wastewater surveillance with daily frequency on selected residence halls to assess wastewater as an early warning tool during times of low transmission with the hope of scaling down clinical test frequency. We evaluated the temporal relationship of the two time-dense data sets, wastewater and clinical, and sought a strategy to achieve the highest wastewater predictive values using the shortest time window to enable timely intervention. There were 11 days with clinical cases in the residence halls (80-120 occupants) under wastewater surveillance with 5 instances of a single clinical case and 3 instances of two clinical cases which also corresponded to a positive wastewater SARS-CoV-2 signal. While the majority (71%) of our wastewater samples were negative for SARS-CoV-2, 29% resulted in at least one positive PCR signal, some of which did not correlate with an identified clinical case. Using a criteria of two consecutive days of positive wastewater signals, we obtained a positive predictive value (PPV) of 75% and a negative predictive value of 87% using a short 2 day time window for agreement. A conventional concordance over a much longer 4 day time window resulted in PPV of only 60%. Our data indicated that daily wastewater collection and using a criteria of two consecutive days of positive wastewater signals was the most predictive approach to timely early warning of COVID-19 cases at the building level.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Universidades , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA