Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(1): 131-144.e18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34919814

RESUMEN

Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.


Asunto(s)
Inhibidores de Fusión de VIH/administración & dosificación , Lipopéptidos/administración & dosificación , Profilaxis Pre-Exposición/métodos , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Células HEK293 , Humanos , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Respuesta Virológica Sostenida , Células U937 , Carga Viral/efectos de los fármacos
2.
J Virol ; 97(8): e0019223, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578234

RESUMEN

Development of highly effective antivirals that are robust to viral evolution is a practical strategy for combating the continuously evolved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inspired by viral multistep entry process, we here focus on developing a bispecific SARS-CoV-2 entry inhibitor, which acts on the cell receptor angiotensin converting enzyme 2 (ACE2) and viral S2 fusion protein. First, we identified a panel of diverse spike (S) receptor-binding domains (RBDs) and found that the RBD derived from Guangdong pangolin coronavirus (PCoV-GD) possessed the most potent antiviral potency. Next, we created a bispecific inhibitor termed RBD-IPB01 by genetically linking a peptide fusion inhibitor IPB01 to the C-terminal of PCoV-GD RBD, which exhibited greatly increased antiviral potency via cell membrane ACE2 anchoring. Promisingly, RBD-IPB01 had a uniformly bifunctional inhibition on divergent pseudo- and authentic SARS-CoV-2 variants, including multiple Omicron subvariants. RBD-IPB01 also showed consistently cross-inhibition of other sarbecoviruses, including SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus (PCoV-GX). RBD-IPB01 displayed low cytotoxicity, high trypsin resistance, and favorable metabolic stability. Combined, our studies have provided a tantalizing insight into the design of broad-spectrum and potent antiviral agent. IMPORTANCE Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution and spillover potential of a wide variety of sarbecovirus lineages indicate the importance of developing highly effective antivirals with broad capability. By directing host angiotensin converting enzyme 2 receptor and viral S2 fusion protein, we have created a dual-targeted virus entry inhibitor with high antiviral potency and breadth. The inhibitor receptor-binding domain (RBD)-IPB01 with the Guangdong pangolin coronavirus (PCoV-GD) spike RBD and a fusion inhibitor IPB01 displays bifunctional cross-inhibitions on pseudo- and authentic SARS-CoV-2 variants including Omicron, as well as on the sarbecoviruses SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus. RBD-IPB01 also efficiently inhibits diverse SARS-CoV-2 infection of human Calu-3 cells and blocks viral S-mediated cell-cell fusion with a dual function. Thus, the creation of such a bifunctional inhibitor with pan-sarbecovirus neutralizing capability has not only provided a potential weapon to combat future SARS-CoV-2 variants or yet-to-emerge zoonotic sarbecovirus, but also verified a viable strategy for the designing of antivirals against infection of other enveloped viruses.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Animales , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Pangolines/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , China , Proteínas Virales de Fusión , Antivirales/farmacología , Antivirales/química
3.
Toxicol Appl Pharmacol ; 482: 116794, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142782

RESUMEN

Doxorubicin (Dox) is a widely used antitumor agent with dose-dependent and cumulative cardiotoxic effects. Resveratrol (Res) is a natural non-flavonoid polyphenol that can potentially provide cardiovascular benefits. We aimed to estimate the protective effect of Res on Dox-induced cardiotoxicity (DIC) and explore whether it was related to attenuating ferroptosis. We established DIC models in C57BL/6 J mice, H9C2 cardiomyoblasts, and neonatal rat cardiomyocytes (NRCMs). We further treated H9C2 cells with RSL3, a ferroptosis agonist, to investigate whether Res exerted protective effects through inhibiting ferroptosis. Ferrostatin-1 (Fer-1) was applied to suppress ferroptosis. Dox treatment caused cardiac dysfunction and resulted in apparent ferroptotic damage in cardiac tissue, involving increased iron accumulation, glutathione depletion, increased expression of ferroptosis-related proteins, and decreased expression of glutathione peroxidase 4, which were alleviated by Fer-1 and Res administration. These findings were also confirmed in Dox-treated H9C2 cells and NRCMs, with Fer-1 and Res effectively attenuating Dox-induced cytotoxicity and ferroptosis. Furthermore, Res protected H9C2 cells from RSL3-induced ferroptotic cell death, and the protective effect was similar to that of Fer-1. Both Dox and RSL3 treatment increased the phosphorylation levels of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinases; however, these changes were hindered by Res. This study demonstrates that Res effectively alleviates DIC by suppressing ferroptosis possibly through modulating the MAPK signaling pathway. Our results highlight that targeting ferroptosis can be a potential cardioprotective strategy for DIC.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Ratones , Ratas , Animales , Resveratrol/farmacología , Cardiotoxicidad/patología , Apoptosis , Línea Celular , Ratones Endogámicos C57BL , Transducción de Señal , Doxorrubicina/farmacología , Miocitos Cardíacos , Estrés Oxidativo
4.
Vascular ; 31(5): 981-988, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35466837

RESUMEN

BACKGROUND: To retrospectively analyze the short-term outcomes of catheter-based versus direct foam sclerotherapy when combined with high ligation (HL) for the treatment of great saphenous vein (GSV) incompetence. METHODS: From July 2018 to October 2019, a total of 82 lower limbs of 70 patients with GSV incompetence received HL combined with catheter-based foam sclerotherapy (CFS group) or direct foam sclerotherapy (DFS group) for GSV proximal trunk. Among them, 40 limbs of 36 patients were treated with CFS, and 42 limbs of 34 patients were treated with DFS. The occlusion of GSV proximal trunk was evaluated with venous duplex ultrasound examinations; Venous Clinical Severity Scores (VCSS) was used to assess clinical improvement; Aberdeen Varicose Veins Questionnaire (AVVQ) was used to assess quality-of-life scores; and Complications was used for the safety evaluation. RESULTS: At day 7 post-operatively, complete occlusion of proximal trunk of the GSV was achieved in 92.5% legs of the CFS group and 71.4% of the DFS group (p = 0.014). Additionally, anterograde flow was found in 7.5% legs of the CFS group and 26.2% of the DFS group (p = 0.025). No significant differences in the occurrence of complications were observed between the two groups. The median follow-up was 285.5 days in the DFS group and 318 days in the CFS group (p = 0.140). VCSS and AVVQ reduction were significant in both CFS group and DFS group (5.3 ± 2.5, 5.5 ± 2.4, p < 0.001 for VCSS; 15.9 ± 8.0, 16.3 ± 8.6, p < 0.001 for AVVQ), but no significant difference were observed between two groups (p = 0.655 for VCSS, p = 0.934 for AVVQ). CONCLUSIONS: Although the occlusion of great saphenous vein proximal trunk were different, two modalities result in similar clinical and quality-of-life improvements. DFS is a feasible alternative to CFS when combined with HL.


Asunto(s)
Várices , Insuficiencia Venosa , Humanos , Escleroterapia/efectos adversos , Vena Safena/diagnóstico por imagen , Vena Safena/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Várices/diagnóstico por imagen , Várices/terapia , Insuficiencia Venosa/diagnóstico por imagen , Insuficiencia Venosa/terapia , Insuficiencia Venosa/etiología
5.
Neuromodulation ; 26(1): 57-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35088742

RESUMEN

OBJECTIVES: Spinal cord stimulation (SCS) is an established neuromodulation method that regulates the cardiac autonomic system. However, the biological mechanisms of the therapeutic effects of SCS after myocardial infarction (MI) remain unclear. MATERIALS AND METHODS: Twenty-five rabbits were divided into five groups: SCS-MI (voltage: 0.5 v; pulse width: 0.2 ms; 50 Hz; ten minutes on and 30 minutes off; two weeks; n = 5), MI (n = 5), sham SCS-MI (voltage: 0 v; two weeks; n = 5), sham MI (n = 5), and blank control (n = 5) groups. MI was induced by permanent left anterior descending artery ligation. SCS-MI and sham SCS-MI rabbits received the corresponding interventions 24 hours after MI. Autonomic remodeling was evaluated using enzyme-linked immunosorbent assay and immunohistochemistry. Inflammation and myocardial fibrosis were assessed using immunohistochemistry, quantitative polymerase chain reaction, hematoxylin and eosin staining, Masson staining, and Western blot. RESULTS: SCS improved the abnormal systemic autonomic activity. Cardiac norepinephrine decreased after MI (p < 0.01) and did not improve with SCS. Cardiac acetylcholine increased with SCS compared with the MI group (p < 0.05). However, no difference was observed between the MI and blank control groups. Growth-associated protein 43 (p < 0.001) and tyrosine hydroxylase (p < 0.001) increased whereas choline acetyltransferase (p < 0.05) decreased in the MI group compared with the blank control group. These changes were attenuated with SCS. SCS inhibited inflammation, decreased the ratio of phosphorylated-Erk to Erk (p < 0.001), and increased the ratio of phosphorylated-STAT3 to STAT3 (p < 0.001) compared with the MI group. Myocardial fibrosis was also attenuated by SCS. CONCLUSIONS: SCS improved abnormal autonomic activity after MI, leading to reduced inflammation, reactivation of STAT3, and inhibition of Erk. Additionally, SCS attenuated myocardial fibrosis. Our results warrant future studies of biological mechanisms of the therapeutic effects of SCS after MI.


Asunto(s)
Infarto del Miocardio , Estimulación de la Médula Espinal , Animales , Conejos , Modelos Animales de Enfermedad , Fibrosis , Inflamación/terapia , Infarto del Miocardio/tratamiento farmacológico , Estimulación de la Médula Espinal/métodos
6.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743078

RESUMEN

In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36-45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting.


Asunto(s)
Inhibidores de Fusión de VIH , VIH-1 , Aminoácidos/metabolismo , Farmacorresistencia Viral/genética , Enfuvirtida/química , Enfuvirtida/farmacología , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/farmacología , Inhibidores de Fusión de VIH/química , Inhibidores de Fusión de VIH/farmacología , Lipopéptidos/química , Mutación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Internalización del Virus
7.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376627

RESUMEN

The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Lipopéptidos/farmacología , Fusión de Membrana/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/fisiología , COVID-19 , Diseño de Fármacos , Células HEK293 , Humanos , Lipopéptidos/química , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo
8.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32404526

RESUMEN

We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance.IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.


Asunto(s)
Lipopéptidos/farmacología , Lipoproteínas/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/metabolismo , Proteínas Virales de Fusión/metabolismo , Internalización del Virus/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Lipopéptidos/química , Lipoproteínas/química , Macaca mulatta , Mutación Missense , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/genética , Proteínas Virales de Fusión/genética
9.
PLoS Pathog ; 15(2): e1007552, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716118

RESUMEN

Combination antiretroviral therapy (cART) dramatically improves survival of HIV-infected patients, but lifelong treatment can ultimately result in cumulative toxicities and drug resistance, thus necessitating the development of new drugs with significantly improved pharmaceutical profiles. We recently found that the fusion inhibitor T-20 (enfuvirtide)-based lipopeptides possess dramatically increased anti-HIV activity. Herein, a group of novel lipopeptides were designed with different lengths of fatty acids, identifying a stearic acid-modified lipopeptide (LP-80) with the most potent anti-HIV activity. It inhibited a large panel of divergent HIV subtypes with a mean IC50 in the extremely low picomolar range, being > 5,300-fold more active than T-20 and the neutralizing antibody VRC01. It also sustained the potent activity against T-20-resistant mutants and exhibited very high therapeutic selectivity index. Pharmacokinetics of LP-80 in rats and monkeys verified its potent and long-acting anti-HIV activity. In the monkey, subcutaneous administration of 3 mg/kg LP-80 yielded serum concentrations of 1,147 ng/ml after injection 72 h and 9 ng/ml after injection 168 h (7 days), equivalent to 42,062- and 330-fold higher than the measured IC50 value. In SHIV infected rhesus macaques, a single low-dose LP-80 (3 mg/kg) sharply reduced viral loads to below the limitation of detection, and twice-weekly monotherapy could maintain long-term viral suppression.


Asunto(s)
Enfuvirtida/uso terapéutico , Lipopéptidos/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Animales , Antirretrovirales , Anticuerpos Neutralizantes , Farmacorresistencia Viral , Enfuvirtida/farmacología , Células HEK293 , Inhibidores de Fusión de VIH/farmacología , Inhibidores de Fusión de VIH/uso terapéutico , Infecciones por VIH/terapia , VIH-1/patogenicidad , Humanos , Macaca mulatta/inmunología , Macaca mulatta/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral , Internalización del Virus
10.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867304

RESUMEN

HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs.IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.


Asunto(s)
Enfuvirtida/farmacología , Infecciones por VIH/terapia , Lipopéptidos/farmacología , Animales , Fármacos Anti-VIH/farmacología , Antirretrovirales/uso terapéutico , Antivirales/farmacología , Línea Celular , Diseño de Fármacos , Farmacorresistencia Viral/efectos de los fármacos , Células HEK293 , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/farmacología , VIH-1/fisiología , VIH-2/fisiología , Humanos , Macaca mulatta , Fusión de Membrana/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Internalización del Virus/efectos de los fármacos
11.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31619552

RESUMEN

Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.


Asunto(s)
Enfuvirtida/metabolismo , Proteína gp41 de Envoltorio del VIH/química , Inhibidores de Fusión de VIH/metabolismo , VIH-1/química , Triptófano/química , Secuencias de Aminoácidos , Sitios de Unión , Dicroismo Circular , Enfuvirtida/síntesis química , Células HEK293 , Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/síntesis química , VIH-1/metabolismo , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Triptófano/metabolismo
12.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462566

RESUMEN

Emerging studies demonstrate that the antiviral activity of viral fusion inhibitor peptides can be dramatically improved when being chemically or genetically anchored to the cell membrane, where viral entry occurs. We previously reported that the short-peptide fusion inhibitor 2P23 and its lipid derivative possess highly potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). To develop a sterilizing or functional-cure strategy, here we genetically linked 2P23 and two control peptides (HIV-1 fusion inhibitor C34 and hepatitis B virus [HBV] entry inhibitor 4B10) with a glycosylphosphatidylinositol (GPI) attachment signal. As expected, GPI-anchored inhibitors were efficiently expressed on the plasma membrane of transduced TZM-bl cells and primarily directed to the lipid raft site without interfering with the expression of CD4, CCR5, and CXCR4. GPI-anchored 2P23 (GPI-2P23) completely protected TZM-bl cells from infections of divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide (T20)-resistant mutants. GPI-2P23 also rendered the cells resistant to viral envelope-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission. Moreover, GPI-2P23-modified human CD4+ T cells (CEMss-CCR5) fully blocked both R5- and X4-tropic HIV-1 isolates and displayed a robust survival advantage over unmodified cells during HIV-1 infection. In contrast, it was found that GPI-anchored C34 was much less effective in inhibiting HIV-2, SIV, and T20-resistant HIV-1 mutants. Therefore, our studies have demonstrated that genetically anchoring a short-peptide fusion inhibitor to the target cell membrane is a viable strategy for gene therapy of both HIV-1 and HIV-2 infections.IMPORTANCE Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-cure or functional-cure strategies. Here, we report that genetically anchoring the short-peptide fusion inhibitor 2P23 to the cell membrane can fully prevent infections from divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide-resistant mutants. Membrane-bound 2P23 also effectively blocks HIV-1 Env-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission, renders CD4+ T cells nonpermissive to infection, and confers a robust survival advantage over unmodified cells. Thus, our studies verify a powerful strategy to generate resistant cells for gene therapy of both the HIV-1 and HIV-2 infections.


Asunto(s)
Inhibidores de Fusión de VIH/farmacología , Internalización del Virus/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/farmacología , Células HEK293 , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Humanos , Fusión de Membrana/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Péptidos/farmacología , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos
13.
Basic Res Cardiol ; 115(2): 8, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31897858

RESUMEN

Macrophages are one cell type in the innate immune system. Recent studies involving macrophages have overturned the conventional concept that circulating bone marrow-derived blood mononuclear cells in the adult body continuously replace macrophages residing in the tissues. Investigations using refined technologies have suggested that embryonic hematopoiesis can result in the differentiation into macrophage subgroups in some tissues. In adulthood, these macrophages are self-sustaining via in situ proliferation, with little contribution of circulating bone marrow-derived blood mononuclear cells. Macrophages are integral component of the heart, accounting for 8% of the non-cardiac cells. The use of innovative molecular techniques in paradigm shifting researches has revealed the complexity of cardiac macrophages, including their heterogeneity and ontological diversity. Resident cardiac macrophages modulate the physiological and pathophysiological processes of the cardiovascular system, with distinct and crucial roles in healthy and injured hearts. Their functions include sensing of pathogens, antigen presentation, digesting cell debris, regulating inflammatory responses, generating distinct cytokines, and secreting some regulatory factors. More recent studies have revealed further functions of cardiac macrophages. This review focuses on macrophages within the cardiovascular system. We discuss evidence that has changed our collective view of cardiac macrophage subgroups, and improved our understanding of the different phenotypes, cell surface markers, heterogeneities, origins, developments, and the dynamic and separate roles of these cardiac macrophage subgroups in the steady state and injured hearts. This review may provide novel insights concerning the pathophysiology of cardiac-resident macrophages in cardiovascular diseases and innovative therapeutic strategies that could include the modulation of the role of macrophages in cardiovascular injuries.


Asunto(s)
Cardiopatías/inmunología , Inmunidad Innata , Macrófagos/inmunología , Miocardio/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Miocardio/metabolismo , Miocardio/patología , Fenotipo , Transducción de Señal
14.
BMC Infect Dis ; 20(1): 569, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753067

RESUMEN

BACKGROUND: HIV-1 produces defective mutants in the process of reproduction. The significance of the mutants has not been well investigated. METHODS: The plasmids of wild type (HIV-1NL4-3) and Env-defective (HIV-1SG3ΔEnv) HIV-1 were co-transfected into HEK293T cells. The progeny virus was collected to infect MT4 cells. The env gene and near-full-length genome (NFLG) of HIV-1 were amplified and sequenced. The phylogenetic diversity, recombinant patterns and hotspots, and the functionality of HIV-1 Env were determined. RESULTS: A total of 42 env genes and 8 NFLGs were successfully amplified and sequenced. Five types of recombinant patterns of env were identified and the same recombinant sites were detected in different patterns. The recombination hotspots were found distributing mainly in conservative regions of env. The recombination between genes of HIV-1NL4-3 and HIV-1SG3Δenv increased the variety of viral quasispecies and resulted in progeny viruses with relative lower infectious ability than that of HIVNL4-3. The defective env genes as well as NFLG could be detected after 20 passages. CONCLUSION: The existence of the defective HIV-1 promotes the phylogenetic evolution of the virus, thus increasing the diversity of virus population. The role of defective genes may be converted from junk genes to useful materials and cannot be neglected in the study of HIV-1 reservoir.


Asunto(s)
Evolución Molecular , Infecciones por VIH/patología , VIH-1/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Células HEK293 , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética , Humanos , Filogenia , Plásmidos/genética , Plásmidos/metabolismo , Recombinación Genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Exp Cell Res ; 376(2): 124-132, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763585

RESUMEN

Macrophages are dynamic cells whose phenotypes and functions are regulated by surrounding inflammatory mediators after pathogenic infection. Imbalanced polarization of classically activated (M1) and alternatively activated (M2) macrophages is closely associated with infection-related complications and their severity. The pathway of T-cell immunoglobulin mucin 3 (Tim-3)/galectin-9 (Gal-9) plays an important role in infection by regulating macrophage function. However, the effects of Tim-3/Gal-9 signalling on M1/M2 macrophage polarization are unclear. Bone marrow-derived macrophages (BMDMs) were stimulated with 0.1 µg/mL lipopolysaccharide (LPS). M1/M2 phenotypic macrophage markers were measured 0, 1, 3, 6, 12, and 24 h after stimulation, α-lactose was used to inhibit Gal-9, anti-mouse Tim-3 antibody was used to block Tim-3, recombinant mouse-Gal-9 (rm-Gal-9) was used to activate Tim-3, which were aimed to verify the role of the Tim-3/Gal-9 pathway in the balance of M1/M2 macrophages when stimulated with LPS. Short-term LPS stimulation upregulated Gal-9 expression and secretion, enhanced the association between Gal-9 and Tim-3, and activated the Tim-3/Gal-9 signalling pathway, eventually inhibiting M1 polarization. Long-term stimulation downregulated Gal-9 expression and secretion, reduced the association between Gal-9 and Tim-3, and inhibited the Tim-3/Gal-9 signalling pathway, eventually promoting M1 polarization, however, decreased M2 polarization and Gal-9 autocrine functions. Overall, LPS had a biphasic effect on BMDMs polarization through the Tim-3/Gal-9 pathway, which was time-dependent.


Asunto(s)
Polaridad Celular , Galectinas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Lipopolisacáridos/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Transducción de Señal , Lesión Pulmonar Aguda/inmunología , Animales , Células de la Médula Ósea/inmunología , Células Cultivadas , Macrófagos/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/inmunología , Tiempo
16.
Lipids Health Dis ; 19(1): 99, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430022

RESUMEN

BACKGROUND: Recently, some studies claim that adipokines may modulate plasma lipids. More interestingly, the ADRB3 Trp64Arg polymorphism may regulate adipokines and play an essential role in lipids metabolism. This study aims to clarify the associations of ADRB3 Trp64Arg polymorphism with plasma adipokines and lipid levels. METHODS: Twenty-two studies (5527 subjects) and 121 studies (54,059 subjects) were respectively identified for the association analyses of adipokines and lipids. Standardized mean difference (SMD) and 95% confidence interval (CI) were used to estimate the strength of the Trp64Arg variant in adipokines and plasma lipids. All results were recalculated after eliminating the studies with heterogeneity. RESULTS: The carriers of the C allele (Arg at 64th position was encoded by the C allele) had higher levels of leptin and lower levels of adiponectin than the non-carriers. The carriers of the C allele had higher levels of triglycerides (TG), total cholesterol (TC), and lower levels of high-density lipoprotein cholesterol (HDL-C) than the non-carriers. Subgroup analysis certified an ethnicity (Asians), disease status (obesity), and gender (females) specific association. Sensitivity analysis indicated that the analysis results were robust and stable. Meta-regression indicated that obesity was related to adiponectin. CONCLUSIONS: The C allele carriers of Trp64Arg polymorphism had a slight but significant influence on lipid levels, and the remarkable effects specific existed in obese Asian women. The associations of Trp64Arg polymorphism with dyslipidemia may partly be mediated by the effect of this polymorphism on adipokines. The association of Trp64Arg polymorphism with obesity may partly be mediated by the effect of this polymorphism on adipokines. The C allele carriers had abnormal levels of adipokines and lipids, and it indicated that the Trp64Arg polymorphism might represent a genetic risk factor for coronary artery disease (CAD).


Asunto(s)
Adiponectina/genética , Dislipidemias/genética , Leptina/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Receptores Adrenérgicos beta 3/genética , Adiponectina/sangre , Adiponectina/metabolismo , Colesterol/sangre , HDL-Colesterol/sangre , Dislipidemias/sangre , Dislipidemias/epidemiología , Dislipidemias/metabolismo , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Leptina/sangre , Leptina/metabolismo , Lípidos/sangre , Masculino , Obesidad/sangre , Obesidad/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Factores Sexuales , Triglicéridos/sangre
17.
J Biol Chem ; 293(14): 5323-5334, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425101

RESUMEN

Enfuvirtide (T20) is the only viral fusion inhibitor approved for clinical use, but it has relatively weak anti-HIV activity and easily induces drug resistance. In succession to T20, T1249 has been designed as a 39-mer peptide composed of amino acid sequences derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV); however, its development has been suspended due to formulation difficulties. We recently developed a T20-based lipopeptide (LP-40) showing greatly improved pharmaceutical properties. Here, we generated a T1249-based lipopeptide, termed LP-46, by replacing its C-terminal tryptophan-rich sequence with fatty acid. As compared with T20, T1249, and LP-40, the truncated LP-46 (31-mer) had dramatically increased activities in inhibiting a large panel of HIV-1 subtypes, with IC50 values approaching low picomolar concentrations. Also, LP-46 was an exceptionally potent inhibitor against HIV-2, SIV, and T20-resistant variants, and it displayed obvious synergistic effects with LP-40. Furthermore, we showed that LP-46 had increased helical stability and binding affinity with the target site. The crystal structure of LP-46 in complex with a target surrogate revealed its critical binding motifs underlying the mechanism of action. Interestingly, it was found that the introduced pocket-binding domain in LP-46 did not interact with the gp41 pocket as expected; instead, it adopted a mode similar to that of LP-40. Therefore, our studies have provided an exceptionally potent and broad fusion inhibitor for developing new anti-HIV drugs, which can also serve as a tool to exploit the mechanisms of viral fusion and inhibition.


Asunto(s)
Enfuvirtida/análogos & derivados , Enfuvirtida/química , Inhibidores de Fusión de VIH/química , Secuencia de Aminoácidos , Antirretrovirales/farmacología , Cristalografía por Rayos X/métodos , Diseño de Fármacos , Farmacorresistencia Viral/efectos de los fármacos , Enfuvirtida/farmacología , VIH-1/metabolismo , VIH-1/fisiología , VIH-2/metabolismo , VIH-2/fisiología , Humanos , Lipopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Internalización del Virus/efectos de los fármacos
18.
J Biol Chem ; 293(33): 12703-12718, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29929981

RESUMEN

Host cell infection with HIV-1 requires fusion of viral and cell membranes. Sifuvirtide (SFT) is a peptide-based HIV-1 fusion inhibitor approved for phase III clinical trials in China. Here, we focused on characterizing HIV-1 variants highly resistant to SFT to gain insight into the molecular resistance mechanism. Three primary substitutions (V38A, A47I, and Q52R) located at the inhibitor-binding site of HIV-1's envelope protein (Env) and one secondary substitution (N126K) located at the C-terminal heptad repeat region of the viral protein gp41, which is part of the envelope, conferred high SFT resistance and cross-resistance to the anti-HIV-1 drug T20 and the template peptide C34. Interestingly, SFT's resistance profile could be dramatically improved with an M-T hook structure-modified SFT (MTSFT) and with short-peptide inhibitors that mainly target the gp41 pocket (2P23 and its lipid derivative LP-19). We found that the V38A and Q52R substitutions reduce the binding stabilities of SFT, C34, and MTSFT, but they had no effect on the binding of 2P23 and LP-19; in sharp contrast, the A47I substitution enhanced fusion inhibitor binding. Furthermore, the primary resistance substitutions impaired Env-mediated membrane fusion and cell entry and changed the conformation of the gp41 core structure. Importantly, whereas the V38A and Q52R substitutions disrupted the N-terminal helix of gp41, a single A47I substitution greatly enhanced its thermostability. Taken together, our results provide crucial structural insights into the mechanism of HIV-1 resistance to gp41-dependent fusion inhibitors, which may inform the development of additional anti-HIV drugs.


Asunto(s)
Farmacorresistencia Viral , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/farmacología , VIH-1/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Mutación , Péptidos/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Humanos , Unión Proteica , Conformación Proteica , Homología de Secuencia , Relación Estructura-Actividad
19.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30089693

RESUMEN

T-20 (enfuvirtide) is the only membrane fusion inhibitor available for the treatment of viral infection; however, it has low anti-human immunodeficiency virus (anti-HIV) activity and a low genetic barrier for drug resistance. We recently reported that T-20 sequence-based lipopeptides possess extremely potent in vitro and in vivo efficacies (X. Ding, Z. Zhang, H. Chong, Y. Zhu, H. Wei, X. Wu, J. He, X. Wang, Y. He, 2017, J Virol 91:e00831-17, https://doi.org/10.1128/JVI.00831-17; H. Chong, J. Xue, Y. Zhu, Z. Cong, T. Chen, Y. Guo, Q. Wei, Y. Zhou, C. Qin, Y. He, 2018, J Virol 92:e00775-18, https://doi.org/10.1128/JVI.00775-18). Here, we focused on characterizing the structure-activity relationships of the T-20 derivatives. First, a novel lipopeptide termed LP-52 was generated with improved target-binding stability and anti-HIV activity. Second, a large panel of truncated lipopeptides was characterized, revealing a 21-amino-acid sequence core structure. Third, it was surprisingly found that the addition of the gp41 pocket-binding residues in the N terminus of the new inhibitors resulted in increased binding but decreased antiviral activities. Fourth, while LP-52 showed the most potent activity in inhibiting divergent HIV-1 subtypes, its truncated versions, such as LP-55 (25-mer) and LP-65 (24-mer), still maintained their potencies at very low picomolar concentrations; however, both the N- and C-terminal motifs of LP-52 played crucial roles in the inhibition of T-20-resistant HIV-1 mutants, HIV-2, and simian immunodeficiency virus (SIV) isolates. Fifth, we verified that LP-52 can bind to target cell membranes and human serum albumin and has low cytotoxicity and a high genetic barrier to inducing drug resistance.IMPORTANCE Development of novel membrane fusion inhibitors against HIV and other enveloped viruses is highly important in terms of the peptide drug T-20, which remains the only one for clinical use, even if it is limited by large dosages and resistance. Here, we report a novel T-20 sequence-based lipopeptide showing extremely potent and broad activities against HIV-1, HIV-2, SIV, and T-20-resistant mutants, as well as an extremely high therapeutic selectivity index and genetic resistance barrier. The structure-activity relationship (SAR) of the T-20 derivatives has been comprehensively characterized, revealing a critical sequence core structure and the target sites of viral vulnerability that do not include the gp41 pocket. The results also suggest that membrane-anchored inhibitors possess unique modes of action relative to unconjugated peptides. Combined, our series studies have not only provided drug candidates for clinical development but also offered important tools to elucidate the mechanisms of viral fusion and inhibition.


Asunto(s)
Antivirales/química , Antivirales/farmacología , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Línea Celular , Humanos , Lipopéptidos/química , Lipopéptidos/farmacología , Unión Proteica , Relación Estructura-Actividad
20.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321334

RESUMEN

SC29EK is an electronically constrained α-helical peptide HIV-1 fusion inhibitor that is highly effective against both wild-type and enfuvirtide (T20)-resistant viruses. In this study, we focused on investigating the mechanism of HIV-1 resistance to SC29EK by two approaches. First, SC29EK-escaping HIV-1 variants were selected and characterized. Three mutant viruses, which possessed two (N43K/E49A) or three (Q39R/N43K/N126K and N43K/E49A/N126K) amino acid substitutions in the N- and C-terminal repeat regions of gp41 were identified as conferring high resistance to SC29EK and cross-resistance to the first-generation (T20 and C34) and newly designed (sifuvirtide, MT-SC29EK, and 2P23) fusion inhibitors. The resistance mutations could reduce the binding stability of SC29EK, impair viral Env-mediated cell fusion and entry, and change the conformation of the gp41 core structure. Further, we determined the crystal structure of SC29EK in complex with a target mimic peptide, which revealed the critical intra- and interhelical interactions underlying the mode of action of SC29EK and the genetic pathway to HIV-1 resistance. Taken together, the present data provide new insights into the structure and function of gp41 and the structure-activity relationship (SAR) of viral fusion inhibitors.IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection, but it has relatively low anti-HIV activity and genetic barriers for resistance, thus calling for new drugs blocking the viral fusion process. As an electronically constrained α-helical peptide, SC29EK is highly potent against both wild-type and T20-resistant HIV-1 strains. Here, we report the characterization of HIV-1 variants resistant to SC29EK and the crystal structure of SC29EK. The key mutations mediating high resistance to SC29EK and cross-resistance to the first and new generations of fusion inhibitors as well as the underlying mechanisms were identified. The crystal structure of SC29EK bound to a target mimic peptide further revealed its action mode and genetic pathway to inducing resistance. Hence, our data have shed new lights on the mechanisms of HIV-1 fusion and its inhibition.


Asunto(s)
Farmacorresistencia Viral/genética , Proteína gp41 de Envoltorio del VIH , Inhibidores de Fusión de VIH/farmacología , VIH-1 , Mutación Missense , Péptidos/farmacología , Sustitución de Aminoácidos , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/química , VIH-1/genética , VIH-1/metabolismo , Humanos , Péptidos/química , Estructura Secundaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA