Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(10): 5783-5796, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36472411

RESUMEN

The balance between exploration and exploitation is essential for decision-making. The present study investigated the role of ventromedial orbitofrontal cortex (vmOFC) glutamate neurons in mediating value-based decision-making by first using optogenetics to manipulate vmOFC glutamate activity in rats during a probabilistic reversal learning (PRL) task. Rats that received vmOFC activation during informative feedback completed fewer reversals and exhibited reduced reward sensitivity relative to rats. Analysis with a Q-learning computational model revealed that increased vmOFC activity did not affect the learning rate but instead promoted maladaptive exploration. By contrast, vmOFC inhibition increased the number of completed reversals and increased exploitative behavior. In a separate group of animals, calcium activity of vmOFC glutamate neurons was recorded using fiber photometry. Complementing our results above, we found that suppression of vmOFC activity during the latter part of rewarded trials was associated with improved PRL performance, greater win-stay responding and selecting the correct choice on the next trial. These data demonstrate that excessive vmOFC activity during reward feedback disrupted value-based decision-making by increasing the maladaptive exploration of lower-valued options. Our findings support the premise that pharmacological interventions that normalize aberrant vmOFC glutamate activity during reward feedback processing may attenuate deficits in value-based decision-making.


Asunto(s)
Corteza Prefrontal , Recompensa , Ratas , Animales , Corteza Prefrontal/fisiología , Aprendizaje Inverso/fisiología , Glutamatos , Toma de Decisiones/fisiología
2.
Brain ; 145(3): 879-886, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35258081

RESUMEN

Loss of midbrain dopamine neurons causes the cardinal symptoms of Parkinson's disease. However, not all dopamine neurons are equally vulnerable and a better understanding of the cell-type specific properties relating to selective dopamine neuron degeneration is needed. Most midbrain dopamine neurons express the vesicular glutamate transporter VGLUT2 during development and a subset continue to express low levels of VGLUT2 in adulthood, enabling the co-release of glutamate. Moreover, VGLUT2 expression in dopamine neurons can be neuroprotective since its genetic disruption was shown to sensitize dopamine neurons to neurotoxins. Here, we show that in response to toxic insult, and in two distinct models of alpha-synuclein stress, VGLUT2 dopamine neurons were resilient to degeneration. Dopamine neurons expressing VGLUT2 were enriched whether or not insult induced dopamine neuron loss, suggesting that while VGLUT2 dopamine neurons are more resilient, VGLUT2 expression can also be transcriptionally upregulated by injury. Finally, we observed that VGLUT2 expression was enhanced in surviving dopamine neurons from post-mortem Parkinson's disease individuals. These data indicate that emergence of a glutamatergic identity in dopamine neurons may be part of a neuroprotective response in Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Adulto , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Mesencéfalo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
3.
J Neurosci ; 41(20): 4500-4513, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33837052

RESUMEN

Pursuing rewards while avoiding danger is an essential function of any nervous system. Here, we examine a new mechanism helping rats negotiate the balance between risk and reward when making high-stakes decisions. Specifically, we focus on GABA neurons within an emerging mesolimbic circuit nexus: the ventral pallidum (VP). These neurons play a distinct role from other VP neurons in simple motivated behaviors in mice, but their role in more complex motivated behaviors is unknown. Here, we interrogate the behavioral functions of VPGABA neurons in male and female transgenic GAD1:Cre rats (and WT littermates), using a reversible chemogenetic inhibition approach. Using a behavioral assay of risky decision-making, and of the food-seeking and shock-avoidance components of this task, we show that engaging inhibitory Gi/o signaling specifically in VPGABA neurons suppresses motivation to pursue highly salient palatable foods, and possibly also motivation to avoid being shocked. In contrast, inhibiting these neurons did not affect seeking of low-value food, free consumption of palatable food, or unconditioned affective responses to shock. Accordingly, when rats considered whether to pursue food despite potential for shock in a risky decision-making task, inhibiting VPGABA neurons caused them to more readily select a small but safe reward over a large but dangerous one, an effect not seen in the absence of shock threat. Together, results indicate that VPGABA neurons are critical for high-stakes adaptive responding that is necessary for survival, but which may also malfunction in psychiatric disorders.SIGNIFICANCE STATEMENT In a dynamic world, it is essential to implement appropriate behaviors under circumstances involving rewards, threats, or both. Here, we demonstrate a crucial role for VPGABA neurons in high-stakes motivated behavior of several types. We show that this VPGABA role in motivation impacts decision-making, as inhibiting these neurons yields a conservative, risk-averse strategy not seen when the task is performed without threat of shock. These new roles for VPGABA neurons in behavior may inform future strategies for treating addiction, and other disorders of maladaptive decision-making.


Asunto(s)
Prosencéfalo Basal/fisiología , Conducta de Elección/fisiología , Neuronas GABAérgicas/fisiología , Motivación/fisiología , Animales , Femenino , Masculino , Ratas , Ratas Transgénicas , Recompensa
4.
J Neurosci ; 37(1): 38-46, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053028

RESUMEN

Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT: Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement.


Asunto(s)
Ácido Glutámico/fisiología , Neuronas/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Recompensa , Animales , Conducta Animal , Conducta de Elección , Neuronas Dopaminérgicas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Optogenética , Núcleo Tegmental Pedunculopontino/citología , Estimulación Luminosa , Autoestimulación , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
Annu Rev Physiol ; 74: 225-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22054239

RESUMEN

Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but many neurons release multiple transmitters. Although the physiological role for corelease has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H(+) electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Corelease thus serves multiple roles in synaptic transmission.


Asunto(s)
Neurotransmisores/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/metabolismo , Animales , Aniones/metabolismo , Monoaminas Biogénicas/fisiología , Cationes/metabolismo , Cloruros/metabolismo , Cloruros/fisiología , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Humanos , Concentración de Iones de Hidrógeno , Neurotransmisores/metabolismo , Protones , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
J Neurosci ; 34(43): 14304-17, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25339743

RESUMEN

Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.


Asunto(s)
Axones/metabolismo , Neuronas Dopaminérgicas/metabolismo , Dinaminas/deficiencia , Mesencéfalo/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Axones/patología , Neuronas Dopaminérgicas/patología , Dinaminas/genética , Femenino , Masculino , Potenciales de la Membrana/fisiología , Mesencéfalo/patología , Ratones , Ratones Noqueados , Mitocondrias/patología , Técnicas de Cultivo de Órganos
7.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464250

RESUMEN

Most studies on the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) have focused on dopamine neurons and their role in processes such as motivation, learning, movement, and associated disorders. However there has been increasing attention on other VTA and SNc cell types that release GABA, glutamate, or a combination of these neurotransmitters. Yet the relative distributions and proportions of neurotransmitter-defined cell types across VTA and SNc has remained unclear. Here, we used fluorescent in situ hybridization in male and female mice to label VTA and SNc neurons that expressed mRNA encoding the canonical vesicular transporters for dopamine, GABA, or glutamate: vesicular monoamine transporter VMAT2, vesicular GABA transporter (VGAT), and vesicular glutamate transporter (VGLUT2). Within VTA, we found that no one type was particularly more abundant, instead we observed similar numbers of VMAT2+ (44%), VGAT+ (37%) and VGLUT2+ (41%) neurons. In SNc we found that a slight majority of neurons expressed VMAT2 (54%), fewer were VGAT+ (42%), and VGLUT2+ neurons were least abundant (16%). Moreover, 20% of VTA neurons and 10% of SNc neurons expressed more than one vesicular transporter, including 45% of VGLUT2 neurons. We also assessed within VTA and SNc subregions and found remarkable heterogeneity in cell-type composition. And by quantifying density across both anterior-posterior and medial-lateral axes we generated heatmaps to visualize the distribution of each cell type. Our data complement recent single-cell RNAseq studies and support a more diverse landscape of neurotransmitter-defined cell types in VTA and SNc than is typically appreciated.

8.
Biol Psychiatry Glob Open Sci ; 4(1): 264-274, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38298783

RESUMEN

Background: The orbitofrontal cortex (OFC) is essential for decision making, and functional disruptions within the OFC are evident in schizophrenia. Postnatal phencyclidine (PCP) administration in rats is a neurodevelopmental manipulation that induces schizophrenia-relevant cognitive impairments. We aimed to determine whether manipulating OFC glutamate cell activity could ameliorate postnatal PCP-induced deficits in decision making. Methods: Male and female Wistar rats (n = 110) were administered saline or PCP on postnatal days 7, 9, and 11. In adulthood, we expressed YFP (yellow fluorescent protein) (control), ChR2 (channelrhodopsin-2) (activation), or eNpHR 3.0 (enhanced halorhodopsin) (inhibition) in glutamate neurons within the ventromedial OFC (vmOFC). Rats were tested on the probabilistic reversal learning task once daily for 20 days while we manipulated the activity of vmOFC glutamate cells. Behavioral performance was analyzed using a Q-learning computational model of reinforcement learning. Results: Compared with saline-treated rats expressing YFP, PCP-treated rats expressing YFP completed fewer reversals, made fewer win-stay responses, and had lower learning rates. We induced similar performance impairments in saline-treated rats by activating vmOFC glutamate cells (ChR2). Strikingly, PCP-induced performance deficits were ameliorated when the activity of vmOFC glutamate cells was inhibited (halorhodopsin). Conclusions: Postnatal PCP-induced deficits in decision making are associated with hyperactivity of vmOFC glutamate cells. Thus, normalizing vmOFC activity may represent a potential therapeutic target for decision-making deficits in patients with schizophrenia.

9.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746104

RESUMEN

Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any DA neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute DA neurodegeneration.

10.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38086374

RESUMEN

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Asunto(s)
Dopamina , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
11.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895464

RESUMEN

The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to VTA dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.

12.
Nat Commun ; 15(1): 4233, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762463

RESUMEN

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Asunto(s)
Reacción de Prevención , Prosencéfalo Basal , Neuronas GABAérgicas , Ácido Glutámico , Recompensa , Área Tegmental Ventral , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/citología , Animales , Ácido Glutámico/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Masculino , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Reacción de Prevención/fisiología , Ratones , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones Endogámicos C57BL , Conducta Animal/fisiología
13.
J Neurosci ; 32(43): 15076-85, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100428

RESUMEN

The ventral tegmental area (VTA) has a central role in the neural processes that underlie motivation and behavioral reinforcement. Although thought to contain only dopamine and GABA neurons, the VTA also includes a recently discovered population of glutamate neurons identified through the expression of the vesicular glutamate transporter VGLUT2. A subset of VGLUT2(+) VTA neurons corelease dopamine with glutamate at terminals in the NAc, but others do not express dopaminergic markers and remain poorly characterized. Using transgenic mice that express fluorescent proteins in distinct cell populations, we now find that both dopamine and glutamate neurons in the medial VTA exhibit a smaller hyperpolarization-activated current (I(h)) than more lateral dopamine neurons and less consistent inhibition by dopamine D(2) receptor agonists. In addition, VGLUT2(+) VTA neurons project to the nucleus accumbens (NAc), lateral habenula, ventral pallidum (VP), and amygdala. Optical stimulation of VGLUT2(+) projections expressing channelrhodopsin-2 further reveals functional excitatory synapses in the VP as well as the NAc. Thus, glutamate neurons form a physiologically and anatomically distinct subpopulation of VTA projection neurons.


Asunto(s)
Ácido Glutámico/metabolismo , Potenciales de la Membrana/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Área Tegmental Ventral/citología , Animales , Biofisica , Channelrhodopsins , Agonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Quinpirol/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética
14.
Proc Natl Acad Sci U S A ; 107(51): 22296-301, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21135246

RESUMEN

Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. We report that conditional knockout (cKO) of the Slc17a6 gene encoding VGLUT2 from the great majority of nociceptors profoundly decreased VGLUT2 mRNA and protein in these neurons, and reduced firing of lamina I spinal cord neurons in response to noxious heat and mechanical stimulation. In behavioral assays, cKO mice showed decreased responsiveness to acute noxious heat, mechanical, and chemical (capsaicin) stimuli, but responded normally to cold stimulation and in the formalin test. Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.


Asunto(s)
Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Calor , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Animales , Conducta Animal/efectos de los fármacos , Capsaicina/farmacología , Frío , Fijadores/farmacología , Formaldehído/farmacología , Hiperalgesia/genética , Ratones , Ratones Noqueados , Dolor/genética , Fármacos del Sistema Sensorial/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/genética
15.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502884

RESUMEN

The ventral pallidum (VP) contains GABA and glutamate (Glut) neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the cell-type-specific mechanisms by which VP projections to VTA drive behavior. Here, we found that both VP GABA and Glut neurons were activated during approach to reward or delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine (DA) and glutamate neurons. Remarkably, this cell-type-specific recruitment was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP Glut neurons activated VTA GABA, as well as DA and Glut neurons, despite driving aversion. However, VP Glut neurons evoked DA in reward-associated ventromedial nucleus accumbens (NAc), but reduced DA in aversion-associated dorsomedial NAc. These findings show how heterogeneous VP cell types can engage VTA cell types to shape approach and avoidance behaviors.

16.
Neuropharmacology ; 234: 109544, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37055008

RESUMEN

Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 ß-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2 , Dopamina , Neuronas Dopaminérgicas , Neurotensina , Núcleo Accumbens , Receptores de Neurotensina , Área Tegmental Ventral , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Potenciales de Acción/efectos de los fármacos , Receptores de Neurotensina/antagonistas & inhibidores , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Neurotensina/farmacología , Ligandos , Antagonistas de los Receptores de Dopamina D2/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología
17.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

18.
Proc Natl Acad Sci U S A ; 106(45): 19168-73, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19864633

RESUMEN

Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.


Asunto(s)
Cocaína/metabolismo , Núcleos del Rafe/metabolismo , Receptores Opioides kappa/metabolismo , Estrés Fisiológico/fisiología , Área Tegmental Ventral/metabolismo , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Análisis de Varianza , Animales , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Lentivirus , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naltrexona/análogos & derivados , Naltrexona/farmacología , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/genética , Estrés Fisiológico/genética
19.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-34876472

RESUMEN

Cholinergic projections from the medial habenula (MHb) to the interpeduncular nucleus (IPN) have been studied for their complex contributions to nicotine addiction and have been implicated in nicotine reinforcement, aversion, and withdrawal. While it has been established that MHb cholinergic projections corelease glutamate, no direct evidence has demonstrated a role for this glutamate projection in nicotine consumption. In the present study, a novel floxed Slc17a7 [vesicular glutamate transporter 1 (VGLUT1)] mouse was generated and used to create conditional knock-out (cKO) mice that lack VGLUT1 in MHb cholinergic neurons. Loss of Slc17a7 expression in ventral MHb cholinergic neurons was validated using fluorescent in situ hybridization, and immunohistochemistry was used to demonstrate a corresponding reduction of VGLUT1 protein in cholinergic terminals in the IPN. We also used optogenetics-assisted electrophysiology to evoke EPSCs in IPN and observed a reduction of glutamatergic currents in the cKO, supporting the functional disruption of VGLUT1 in MHb to IPN synapses. cKO mice exhibited no gross phenotypic abnormalities and displayed normal thigmotaxis and locomotor behavior in the open-field assay. When trained to lever press for food, there was no difference between control and cKO. However, when tested in a nicotine self-administration procedure, we found that the loss of VGLUT1-mediated glutamate corelease led to increased responding for nicotine. These findings indicate that glutamate corelease from ventral MHb cholinergic neurons opposes nicotine self-administration, and provide additional support for targeting this synapse to develop potential treatments for nicotine addiction.


Asunto(s)
Habénula , Núcleo Interpeduncular , Animales , Hibridación Fluorescente in Situ , Ratones , Nicotina , Agonistas Nicotínicos
20.
J Neurosci ; 30(24): 8229-33, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20554874

RESUMEN

Coincident signaling by dopamine and glutamate is thought to be crucial for a variety of motivated behaviors. Previous work has suggested that some midbrain dopamine neurons are themselves capable of glutamate corelease, but this phenomenon remains poorly understood. Here, we expressed the light-activated cation channel Channelrhodopsin-2 (ChR2) in genetically defined midbrain dopamine neurons to stimulate exocytosis specifically from dopaminergic terminals in both the nucleus accumbens (NAc) shell and dorsal striatum of brain slices from adult mice. Optical activation resulted in robust glutamate-mediated EPSCs in all medium spiny neurons examined in the NAc shell. In contrast, optically evoked glutamatergic currents were nearly undetectable in the dorsal striatum. Further, we used a conditional knock-out mouse lacking vesicular glutamate transporter 2 (VGLUT2) specifically in dopamine neurons to determine whether VGLUT2 is required for the exocytotic release of glutamate from dopamine neurons. Our data show that conditional knock-out completely abolished all optically evoked glutamate release. These results provide definitive physiological evidence for VGLUT2-mediated glutamate release by mature dopamine neurons projecting to the NAc shell, but not to the dorsal striatum. Thus, the unique ability of NAc-projecting dopamine neurons to synchronously activate both dopamine and glutamate receptors may have crucial implications for the ability to respond to motivationally significant stimuli.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/citología , Terminales Presinápticos/metabolismo , Análisis de Varianza , Animales , Benzazepinas/farmacología , Biofisica , Channelrhodopsins , Cuerpo Estriado/citología , Antagonistas de Dopamina/farmacología , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Exocitosis/genética , Femenino , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Quinoxalinas/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA