Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 134(5): 877-86, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18691744

RESUMEN

Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.


Asunto(s)
Línea Celular , Enfermedades Genéticas Congénitas/patología , Células Madre Pluripotentes/citología , Células de la Médula Ósea/citología , Fibroblastos/citología , Humanos , Cariotipificación , Células Madre Mesenquimatosas/citología , Mutación
2.
Nature ; 464(7286): 292-6, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20164838

RESUMEN

Patients with dyskeratosis congenita (DC), a disorder of telomere maintenance, suffer degeneration of multiple tissues. Patient-specific induced pluripotent stem (iPS) cells represent invaluable in vitro models for human degenerative disorders like DC. A cardinal feature of iPS cells is acquisition of indefinite self-renewal capacity, which is accompanied by induction of the telomerase reverse transcriptase gene (TERT). We investigated whether defects in telomerase function would limit derivation and maintenance of iPS cells from patients with DC. Here we show that reprogrammed DC cells overcome a critical limitation in telomerase RNA component (TERC) levels to restore telomere maintenance and self-renewal. We discovered that TERC upregulation is a feature of the pluripotent state, that several telomerase components are targeted by pluripotency-associated transcription factors, and that in autosomal dominant DC, transcriptional silencing accompanies a 3' deletion at the TERC locus. Our results demonstrate that reprogramming restores telomere elongation in DC cells despite genetic lesions affecting telomerase, and show that strategies to increase TERC expression may be therapeutically beneficial in DC patients.


Asunto(s)
Disqueratosis Congénita/genética , Células Madre Pluripotentes , Telómero/genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Reprogramación Celular/genética , Disqueratosis Congénita/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones , Proteínas Nucleares/genética , Células Madre Pluripotentes/enzimología , ARN/genética , ARN/metabolismo , Eliminación de Secuencia/genética , Telomerasa/genética , Telomerasa/metabolismo , Regulación hacia Arriba
3.
Nature ; 451(7175): 141-6, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18157115

RESUMEN

Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.


Asunto(s)
Proteínas HMGB/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Adulto , Animales , Diferenciación Celular , Forma de la Célula , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Feto/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Proteínas HMGB/genética , Proteínas de Homeodominio/genética , Humanos , Recién Nacido , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/trasplante , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1 , Teratoma/patología , Factores de Transcripción/genética , Trasplante Heterólogo
4.
Blood ; 113(22): 5476-9, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19299331

RESUMEN

Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.


Asunto(s)
Células Sanguíneas/citología , Desdiferenciación Celular , Proliferación Celular , Células Madre Pluripotentes/citología , Adulto , Antígenos CD34/metabolismo , Células Sanguíneas/metabolismo , Técnicas de Cultivo de Célula , Desdiferenciación Celular/fisiología , Células Cultivadas , Humanos , Factor 4 Similar a Kruppel , Masculino , Modelos Biológicos , Células Madre Pluripotentes/metabolismo
5.
Sci Rep ; 6: 29784, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27405580

RESUMEN

Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease.


Asunto(s)
Ceguera , Diferenciación Celular , Células Madre Embrionarias Humanas , Células Madre Pluripotentes Inducidas , Células Fotorreceptoras de Vertebrados , Retinitis Pigmentosa , Animales , Ceguera/metabolismo , Ceguera/patología , Ceguera/terapia , Xenoinjertos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/trasplante , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia
6.
Stem Cell Reports ; 3(5): 817-31, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418726

RESUMEN

Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the ß2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.


Asunto(s)
Plaquetas/citología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Megacariocitos/citología , Animales , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestructura , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Células Cultivadas , Técnicas de Inactivación de Genes , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Leucosialina/metabolismo , Masculino , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Ratones Endogámicos NOD , Ratones SCID , Microscopía Electrónica , Microscopía Fluorescente , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transfusión de Plaquetas/métodos , Reproducibilidad de los Resultados , Trasplante Heterólogo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
7.
Stem Cell Res ; 8(3): 410-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22284529

RESUMEN

Deficiency of the nuclear factor-kappa-B essential modulator (NEMO) is a rare X-linked disorder that presents in boys as hypohydrotic ectodermal dysplasia with immunodeficiency due to defective nuclear factor-κB activation. Here we report on the generation of 2 human embryonic stem cell lines from discarded in vitro fertilization (IVF) embryos ascertained via preimplantation genetic diagnosis. We have derived two human embryonic stem cell lines that carry a T458G hypomorphic mutation in exon 4 of the NEMO (or IKBKG) gene. One of the lines is diploid male; the other is diploid female but has clonally inactivated the X-chromosome that harbors the wild-type IKBKG gene. We show that both lines are pluripotent, have the capacity to differentiate into hematopoietic progenitors, and have defective inhibitor of nuclear factor kappa-B kinase activity. These NEMO deficiency hES cell lines provide an unlimited source for differentiated cell types and may serve as a unique tool to study NEMO deficiency and potentially lead to the development of new therapies for this disease.


Asunto(s)
Células Madre Embrionarias/metabolismo , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Alelos , Sustitución de Aminoácidos , Animales , Células Cultivadas , Cromosomas Humanos X/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Exones , Femenino , Humanos , Cariotipificación , Masculino , Ratones , Mutación , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
8.
Nat Biotechnol ; 29(12): 1117-9, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22119740

RESUMEN

We compared bona fide human induced pluripotent stem cells (iPSCs) derived from umbilical cord blood (CB) cells and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSCs and K-iPSCs were distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture did not improve their epigenetic resemblance to embryonic stem cells, implying that some human iPSCs retain a residual 'epigenetic memory' of their tissue of origin.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Metilación de ADN , Epigénesis Genética , Sangre Fetal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/metabolismo , Sangre Fetal/citología , Regulación de la Expresión Génica , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/citología , Queratinocitos/citología , Análisis por Micromatrices
9.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1C.10, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20814935

RESUMEN

The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology, regenerative medicine, and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus, researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF), with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs, as well as their engineered counterparts, human induced pluripotent stem cells (hiPSCs).


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/citología , Feto/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Esferoides Celulares/citología , Animales , Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo/métodos , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Feto/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Modelos Biológicos , Esferoides Celulares/fisiología
10.
Nat Biotechnol ; 27(11): 1033-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19826408

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by enforced expression of transcription factors. Using serial live imaging of human fibroblasts undergoing reprogramming, we identified distinct colony types that morphologically resemble embryonic stem (ES) cells yet differ in molecular phenotype and differentiation potential. By analyzing expression of pluripotency markers, methylation at the OCT4 and NANOG promoters and differentiation into teratomas, we determined that only one colony type represents true iPS cells, whereas the others represent reprogramming intermediates. Proviral silencing and expression of TRA-1-60, DNMT3B and REX1 can be used to distinguish the fully reprogrammed state, whereas alkaline phosphatase, SSEA-4, GDF3, hTERT and NANOG are insufficient as markers. We also show that reprogramming using chemically defined medium favors formation of fully reprogrammed over partially reprogrammed colonies. Our data define molecular markers of the fully reprogrammed state and highlight the need for rigorous characterization and standardization of putative iPS cells.


Asunto(s)
Reprogramación Celular/genética , Imagenología Tridimensional/métodos , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Línea Celular , Forma de la Célula , Supervivencia Celular , Ensayo de Unidades Formadoras de Colonias , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Teratoma/patología , Factores de Tiempo
11.
Nat Protoc ; 3(7): 1180-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18600223

RESUMEN

Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Humanos , Factor 4 Similar a Kruppel , Retroviridae , Transducción Genética
12.
Nat Protoc ; 3(5): 923-33, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18451800

RESUMEN

Human embryonic stem (hES) cells are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. Most hES cell lines are derived from cryopreserved human embryos that were created during in vitro fertilization (IVF) and are in excess of clinical need. Embryos that are discarded during the IVF procedure because of poor morphology and a low likelihood for generating viable pregnancies or surviving the cryopreservation process are also a viable source of hES cells. In this protocol, we describe how to derive novel hES cells from discarded poor-quality embryos and how to maintain the hES cell lines.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Fertilización In Vitro , Humanos , Bancos de Tejidos
13.
Nat Biotechnol ; 26(2): 212-4, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223642

RESUMEN

During in vitro fertilization, embryos deemed clinically useless based on poor morphology are typically discarded. Here we demonstrate a statistical correlation between the developmental stage of such poor-quality embryos and the yield of human embryonic stem (hES) cell lines. Early-arrested or highly fragmented embryos only rarely yield cell lines, whereas those that have achieved blastocyst stage are a robust source of normal hES cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA