Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31534238

RESUMEN

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Asunto(s)
Infecciones por Poxviridae/inmunología , Poxviridae/fisiología , Dominios Proteicos/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Alelos , Animales , Extinción Biológica , Humanos , Inmunidad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense/genética , Fosforilación
2.
Nat Immunol ; 14(5): 446-53, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23502855

RESUMEN

Spleen-resident dendritic cell (DC) populations occupy sentinel positions for the capture and presentation of blood-borne antigens. Here we found a difference in expression of the chemotactic receptor EBI2 (GPR183) on splenic DC subsets and that EBI2 regulated the positioning and homeostasis of DCs in the spleen. EBI2 and its main ligand, 7α,25-OHC, were required for the generation of the splenic CD4(+) DC subset and the localization of DCs in bridging channels. Absence of EBI2 from DCs resulted in defects in both the activation of CD4(+) T cells and the induction of antibody responses. Regulated expression of EBI2 on DC populations is therefore critical for the generation and correct positioning of splenic DCs and the initiation of immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Quimiotaxis/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos , Receptores Acoplados a Proteínas G/metabolismo , Bazo/inmunología , Animales , Formación de Anticuerpos/genética , Presentación de Antígeno/genética , Antígenos CD4/metabolismo , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Cultivadas , Células Dendríticas/patología , Homeostasis/genética , Homeostasis/inmunología , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Bazo/patología
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177474

RESUMEN

Viral causes of pneumonia pose constant threats to global public health, but there are no specific treatments currently available for the condition. Antivirals are ineffective when administered late after the onset of symptoms. Pneumonia is caused by an exaggerated inflammatory cytokine response to infection, but tissue necrosis and damage caused by virus also contribute to lung pathology. We hypothesized that viral pneumonia can be treated effectively if both virus and inflammation are simultaneously targeted. Combined treatment with the antiviral drug cidofovir and etanercept, which targets tumor necrosis factor (TNF), down-regulated nuclear factor kappa B-signaling and effectively reduced morbidity and mortality during respiratory ectromelia virus (ECTV) infection in mice even when treatment was initiated after onset of clinical signs. Treatment with cidofovir alone reduced viral load, but animals died from severe lung pathology. Treatment with etanercept had no effect on viral load but diminished levels of inflammatory cytokines and chemokines including TNF, IL-6, IL-1ß, IL-12p40, TGF-ß, and CCL5 and dampened activation of the STAT3 cytokine-signaling pathway, which transduces signals from multiple cytokines implicated in lung pathology. Consequently, combined treatment with a STAT3 inhibitor and cidofovir was effective in improving clinical disease and lung pathology in ECTV-infected mice. Thus, the simultaneous targeting of virus and a specific inflammatory cytokine or cytokine-signaling pathway is effective in the treatment of pneumonia. This approach might be applicable to pneumonia caused by emerging and re-emerging viruses, like seasonal and pandemic influenza A virus strains and severe acute respiratory syndrome coronavirus 2.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antivirales/uso terapéutico , Cidofovir/uso terapéutico , Etanercept/administración & dosificación , Neumonía Viral/tratamiento farmacológico , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cidofovir/farmacología , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Virus de la Ectromelia/efectos de los fármacos , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neumonía Viral/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Carga Viral/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 117(43): 26885-26894, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046647

RESUMEN

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1ß, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti-IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Asunto(s)
Virus de la Ectromelia/fisiología , Interacciones Huésped-Patógeno , Receptores del Factor de Necrosis Tumoral/metabolismo , Infecciones del Sistema Respiratorio/virología , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Femenino , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones del Sistema Respiratorio/patología , Carga Viral
5.
Proc Natl Acad Sci U S A ; 117(27): 15935-15946, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571912

RESUMEN

Excessive tumor necrosis factor (TNF) is known to cause significant pathology. Paradoxically, deficiency in TNF (TNF-/-) also caused substantial pathology during respiratory ectromelia virus (ECTV) infection, a surrogate model for smallpox. TNF-/- mice succumbed to fulminant disease whereas wild-type mice, and those engineered to express only transmembrane TNF (mTNF), fully recovered. TNF deficiency did not affect viral load or leukocyte recruitment but caused severe lung pathology and excessive production of the cytokines interleukin (IL)-6, IL-10, transforming growth factor beta (TGF-ß), and interferon gamma (IFN-γ). Short-term blockade of these cytokines significantly reduced lung pathology in TNF-/- mice concomitant with induction of protein inhibitor of activated STAT3 (PIAS3) and/or suppressor of cytokine signaling 3 (SOCS3), factors that inhibit STAT3 activation. Consequently, inhibition of STAT3 activation with an inhibitor reduced lung pathology. Long-term neutralization of IL-6 or TGF-ß protected TNF-/- mice from an otherwise lethal infection. Thus, mTNF alone is necessary and sufficient to regulate lung inflammation but it has no direct antiviral activity against ECTV. The data indicate that targeting specific cytokines or cytokine-signaling pathways to reduce or ameliorate lung inflammation during respiratory viral infections is possible but that the timing and duration of the interventive measure are critical.


Asunto(s)
Citocinas/metabolismo , Infecciones por Poxviridae/virología , Poxviridae/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular Tumoral , Femenino , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poxviridae/inmunología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/patología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Cell Microbiol ; 22(8): e13206, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32237038

RESUMEN

The induction of Smad signalling by the extracellular ligand TGF-ß promotes tissue plasticity and cell migration in developmental and pathological contexts. Here, we show that vaccinia virus (VACV) stimulates the activity of Smad transcription factors and expression of TGF-ß/Smad-responsive genes at the transcript and protein levels. Accordingly, infected cells share characteristics to those undergoing TGF-ß/Smad-mediated epithelial-to-mesenchymal transition (EMT). Depletion of the Smad4 protein, a common mediator of TGF-ß signalling, results in an attenuation of viral cell-to-cell spread and reduced motility of infected cells. VACV induction of TGF-ß/Smad-responsive gene expression does not require the TGF-ß ligand or type I and type II TGF-ß receptors, suggesting a novel, non-canonical Smad signalling pathway. Additionally, the spread of ectromelia virus, a related orthopoxvirus that does not activate a TGF-ß/Smad response, is enhanced by the addition of exogenous TGF-ß. Together, our results indicate that VACV orchestrates a TGF-ß-like response via a unique activation mechanism to enhance cell migration and promote virus spread.


Asunto(s)
Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Virus Vaccinia/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal , Células HT29 , Células HaCaT , Células HeLa , Humanos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología , Virus Vaccinia/efectos de los fármacos
7.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626686

RESUMEN

Live viral vaccines elicit protective, long-lived humoral immunity, but the underlying mechanisms through which this occurs are not fully elucidated. Generation of affinity matured, long-lived protective antibody responses involve close interactions between T follicular helper (TFH) cells, germinal center (GC) B cells, and T follicular regulatory (TFR) cells. We postulated that escalating concentrations of antigens from replicating viruses or live vaccines, spread through the hematogenous route, are essential for the induction and maintenance of long-lived protective antibody responses. Using replicating and poorly replicating or nonreplicating orthopox and influenza A viruses, we show that the magnitude of TFH cell, GC B cell, and neutralizing antibody responses is directly related to virus replicative capacity. Further, we have identified that both lymphoid and circulating TFH:TFR cell ratios during the peak GC response can be used as an early predictor of protective, long-lived antibody response induction. Finally, administration of poorly or nonreplicating viruses to allow hematogenous spread generates significantly stronger TFH:TFR ratios and robust TFH, GC B cell and neutralizing antibody responses.IMPORTANCE Neutralizing antibody response is the best-known correlate of long-term protective immunity for most of the currently licensed clinically effective viral vaccines. However, the host immune and viral factors that are critical for the induction of robust and durable antiviral humoral immune responses are not well understood. Our study provides insight into the dynamics of key cellular mediators of germinal center reaction during live virus infections and the influence of viral replicative capacity on the magnitude of antiviral antibody response and effector function. The significance of our study lies in two key findings. First, the systemic spread of even poorly replicating or nonreplicating viruses to mimic the spread of antigens from replicating viruses due to escalating antigen concentration is fundamental to the induction of durable antibody responses. Second, the TFH:TFR ratio may be used as an early predictor of protective antiviral humoral immune responses long before memory responses are generated.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Replicación Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Línea Celular , Chlorocebus aethiops , Perros , Centro Germinal/inmunología , Inmunidad Humoral/inmunología , Células de Riñón Canino Madin Darby , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Vacunas Atenuadas/inmunología
8.
PLoS Pathog ; 11(12): e1005342, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26700306

RESUMEN

Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.


Asunto(s)
Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/inmunología , Ectromelia Infecciosa/transmisión , Animales , Terapia de Inmunosupresión , Inmunosupresores/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Recurrencia
9.
J Virol ; 89(3): 1889-99, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25428875

RESUMEN

UNLABELLED: Antibody production by B cells in the absence of CD4 T cell help has been shown to be necessary and sufficient for protection against secondary orthopoxvirus (OPV) infections. This conclusion is based on short-term depletion of leukocyte subsets in vaccinated animals, in addition to passive transfer of immune serum to naive hosts that are subsequently protected from lethal orthopoxvirus infection. Here, we show that CD4 T cell help is necessary for neutralizing antibody production and virus control during a secondary ectromelia virus (ECTV) infection. A crucial role for CD4 T cells was revealed when depletion of this subset was extended beyond the acute phase of infection. Sustained depletion of CD4 T cells over several weeks in vaccinated animals during a secondary infection resulted in gradual diminution of B cell responses, including neutralizing antibody, contemporaneous with a corresponding increase in the viral load. Long-term elimination of CD8 T cells alone delayed virus clearance, but prolonged depletion of both CD4 and CD8 T cells resulted in death associated with uncontrolled virus replication. In the absence of CD4 T cells, perforin- and granzyme A- and B-dependent effector functions of CD8 T cells became critical. Our data therefore show that both CD4 T cell help for antibody production and CD8 T cell effector function are critical for protection against secondary OPV infection. These results are consistent with the notion that the effectiveness of the smallpox vaccine is related to its capacity to induce both B and T cell memory. IMPORTANCE: Smallpox eradication through vaccination is one of the most successful public health endeavors of modern medicine. The use of various orthopoxvirus (OPV) models to elucidate correlates of vaccine-induced protective immunity showed that antibody is critical for protection against secondary infection, whereas the role of T cells is unclear. Short-term leukocyte subset depletion in vaccinated animals or transfer of immune serum to naive, immunocompetent hosts indicates that antibody alone is necessary and sufficient for protection. We show here that long-term depletion of CD4 T cells over several weeks in vaccinated animals during secondary OPV challenge reveals an important role for CD4 T cell-dependent antibody responses in effective virus control. Prolonged elimination of CD8 T cells alone delayed virus clearance, but depletion of both T cell subsets resulted in death associated with uncontrolled virus replication. Thus, vaccinated individuals who subsequently acquire T cell deficiencies may not be protected against secondary OPV infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Virus de la Ectromelia/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Femenino , Depleción Linfocítica , Ratones Endogámicos C57BL , Sobrevida , Carga Viral
10.
PLoS Pathog ; 10(12): e1004526, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25502180

RESUMEN

Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in wild mouse. While retaining 'Asp-ase' activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV) infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial) apoptotic pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of GzmB have a profound impact on the immune response to a common and authentic viral pathogen.


Asunto(s)
Variación Genética/genética , Granzimas/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/mortalidad , Muromegalovirus/inmunología , Virosis/inmunología , Virosis/mortalidad , Alelos , Secuencia de Aminoácidos , Animales , Apoptosis , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Caspasas/metabolismo , Modelos Animales de Enfermedad , Granzimas/análisis , Granzimas/deficiencia , Infecciones por Herpesviridae/patología , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Virosis/patología
11.
J Virol ; 87(7): 3852-61, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345522

RESUMEN

A pivotal role for antigen-specific recall responses to secondary virus infection is well established, but the contribution of innate immune cells to this process is unknown. Recovery of mice from a primary orthopoxvirus (ectromelia virus [ECTV]) infection requires the function of natural killer (NK) cells, granulocytes, plasmacytoid dendritic cells (pDC), T cells, and B cells. However, during a secondary challenge, resolution of infection is thought to be dependent on antibody but not T cell function. We investigated the contribution of NK cells, granulocytes, and pDC to virus control during a secondary virus challenge in mice that had been primed with an avirulent, mutant strain of ECTV. Mice depleted of NK cells, granulocytes, or pDC effectively controlled virus, as did mice depleted of both CD4 and CD8 T cell subsets. However, mice concurrently depleted of all three innate cell subsets had elevated virus load, but this was significantly exacerbated in mice also depleted of CD4 and/or CD8 T cells. Increased viral replication in mice lacking innate cells plus CD4 T cells was associated with a significant reduction in neutralizing antibody. Importantly, in addition to T-dependent neutralizing antibody responses, the function of CD8 T cells was also clearly important for virus control. The data indicate that in the absence of innate cell subsets, a critical role for both CD4 and CD8 T cells becomes apparent and, conversely, in the absence of T cell subsets, innate immune cells help contain infection.


Asunto(s)
Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/inmunología , Inmunidad Humoral/inmunología , Inmunidad Innata/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Anticuerpos Neutralizantes , Línea Celular , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Recurrencia
12.
J Virol ; 86(13): 7427-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532690

RESUMEN

Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Virus de la Ectromelia/patogenicidad , Ectromelia Infecciosa/virología , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Liberación del Virus , Animales , Virus de la Ectromelia/genética , Femenino , Eliminación de Gen , Hígado/virología , Ganglios Linfáticos/virología , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas , Bazo/virología , Carga Viral , Ensayo de Placa Viral , Proteínas Virales/genética , Virulencia
13.
J Immunol ; 186(11): 6148-56, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21525386

RESUMEN

Parasite burden predicts disease severity in malaria and risk of death in cerebral malaria patients. In murine experimental cerebral malaria (ECM), parasite burden and CD8(+) T cells promote disease by mechanisms that are not fully understood. We found that the majority of brain-recruited CD8(+) T cells expressed granzyme B (GzmB). Furthermore, gzmB(-/-) mice harbored reduced parasite numbers in the brain as a consequence of enhanced antiparasitic CD4(+) T cell responses and were protected from ECM. We showed in these ECM-resistant mice that adoptively transferred, Ag-specific CD8(+) T cells migrated to the brain, but did not induce ECM until a critical Ag threshold was reached. ECM induction was exquisitely dependent on Ag-specific CD8(+) T cell-derived perforin and GzmB, but not IFN-γ. In wild-type mice, full activation of brain-recruited CD8(+) T cells also depended on a critical number of parasites in this tissue, which in turn, was sustained by these tissue-recruited cells. Thus, an interdependent relationship between parasite burden and CD8(+) T cells dictates the onset of perforin/GzmB-mediated ECM.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Granzimas/inmunología , Malaria Cerebral/inmunología , Traslado Adoptivo , Animales , Encéfalo/metabolismo , Encéfalo/parasitología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Movimiento Celular/inmunología , Femenino , Citometría de Flujo , Granzimas/genética , Interacciones Huésped-Parásitos/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Malaria Cerebral/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina/inmunología , Perforina/metabolismo , Plasmodium chabaudi/inmunología , Plasmodium chabaudi/fisiología , Plasmodium yoelii/inmunología , Plasmodium yoelii/fisiología
14.
Viruses ; 15(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36851532

RESUMEN

Influenza pneumonia is a severe complication caused by inflammation of the lungs following infection with seasonal and pandemic strains of influenza A virus (IAV), that can result in lung pathology, respiratory failure, and death. There is currently no treatment for severe disease and pneumonia caused by IAV. Antivirals are available but are only effective if treatment is initiated within 48 h of onset of symptoms. Influenza complications and mortality are often associated with high viral load and an excessive lung inflammatory cytokine response. Therefore, we simultaneously targeted the virus and inflammation. We used the antiviral oseltamivir and the anti-inflammatory drug etanercept to dampen TNF signaling after the onset of clinical signs to treat pneumonia in a mouse model of respiratory IAV infection. The combined treatment down-regulated the inflammatory cytokines TNF, IL-1ß, IL-6, and IL-12p40, and the chemokines CCL2, CCL5, and CXCL10. Consequently, combined treatment with oseltamivir and a signal transducer and activator of transcription 3 (STAT3) inhibitor effectively reduced clinical disease and lung pathology. Combined treatment using etanercept or STAT3 inhibitor and oseltamivir dampened an overlapping set of cytokines. Thus, combined therapy targeting a specific cytokine or cytokine signaling pathway and an antiviral drug provide an effective treatment strategy for ameliorating IAV pneumonia. This approach might apply to treating pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Neumonía , Animales , Ratones , Humanos , Gripe Humana/complicaciones , Gripe Humana/tratamiento farmacológico , Oseltamivir/uso terapéutico , Etanercept , SARS-CoV-2 , Neumonía/tratamiento farmacológico , Inflamación , Antivirales/uso terapéutico , Morbilidad , Citocinas
15.
Proc Natl Acad Sci U S A ; 106(35): 14984-9, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706459

RESUMEN

A remarkable feature of the adaptive immune system is the speed at which small numbers of antigen-specific lymphocytes can mediate a successful immune response. Rapid expansion of T and B lymphocyte clones that have receptors specific for a particular antigen is one of the primary means by which a swift response is generated. Although much of this clonal expansion is caused by the division of antigen-specific cells, here we demonstrate an additional mechanism by which the pool of effector T cells against a viral infection can quickly enlarge. Our data show that virus-specific CD8+ cytotoxic T lymphocytes (CTL) can transfer their T cell receptors (TCR) to recipient CTL of an unrelated specificity that, as a consequence, gain the antigen specificity of the donor T cell. This process occurs within minutes via membrane exchange and results in the recipient CTL acquiring the ability to recognize and eliminate cells targeted by the donor TCR, while still retaining the antigen specificity of its own TCR. Such receptor sharing allows rapid, proliferation-independent expansion of virus-specific T cell clones of low frequency and plays a highly significant antiviral role that can protect the host from an otherwise lethal infection.


Asunto(s)
Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Membrana Celular/inmunología , Células Cultivadas , Técnicas de Cocultivo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Ectromelia Infecciosa/sangre , Epítopos/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Carga Viral
16.
FEBS J ; 289(4): 883-900, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33624419

RESUMEN

Pneumonia is a serious complication associated with inflammation of the lungs due to infection with viral pathogens. Seasonal and pandemic influenza viruses, variola virus (agent of smallpox) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; agent of COVID-19) are some leading examples. Viral pneumonia is triggered by excessive inflammation associated with dysregulated cytokine production, termed 'cytokine storm'. Several cytokines have been implicated but tumour necrosis factor (TNF) plays a critical role in driving lung inflammation, severe lung pathology and death. Despite this, the exact role TNF plays in the aetiology and pathogenesis of virus infection-induced respiratory complications is not well understood. In this review, we discuss the pathological and immunomodulatory roles of TNF in contributing to immunopathology and resolution of lung inflammation, respectively, in mouse models of influenza- and smallpox (mousepox)-induced pneumonia. We review studies that have investigated dampening of inflammation on the outcome of severe influenza and orthopoxvirus infections. Most studies on the influenza model have evaluated the efficacy of treatment with anti-inflammatory drugs, including anti-TNF agents, in animal models on the day of viral infection. We question the merits of those studies as they are not transferable to the clinic given that individuals generally present at a hospital only after the onset of disease symptoms and not on the day of infection. We propose that research should be directed at determining whether dampening lung inflammation after the onset of disease symptoms will reduce morbidity and mortality. Such a treatment strategy will be more relevant clinically.


Asunto(s)
Antiinflamatorios/uso terapéutico , COVID-19/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/efectos adversos , Humanos , Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genética , Tratamiento Farmacológico de COVID-19
17.
J Exp Med ; 201(1): 95-104, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15623576

RESUMEN

The large size of poxvirus genomes has stymied attempts to identify determinants recognized by CD8+ T cells and greatly impeded development of mouse smallpox vaccination models. Here, we use a vaccinia virus (VACV) expression library containing each of the predicted 258 open reading frames to identify five peptide determinants that account for approximately half of the VACV-specific CD8+ T cell response in C57BL/6 mice. We show that the primary immunodominance hierarchy is greatly affected by the route of VACV infection and the poxvirus strain used. Modified vaccinia virus ankara (MVA), a candidate replacement smallpox vaccine, failed to induce responses to two of the defined determinants. This could not be predicted by genomic comparison of viruses and is not due strictly to limited MVA replication in mice. Several determinants are immunogenic in cowpox and ectromelia (mousepox) virus infections, and immunization with the immunodominant determinant provided significant protection against lethal mousepox. These findings have important implications for understanding poxvirus immunity in animal models and bench-marking immune responses to poxvirus vaccines in humans.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Epítopos/metabolismo , Inmunización , Vacuna contra Viruela/inmunología , Virus Vaccinia/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/inmunología , Clonación Molecular , Cartilla de ADN , Células Dendríticas/metabolismo , Epítopos/genética , Epítopos/inmunología , Biblioteca de Genes , Genes MHC Clase I/genética , Ratones , Ratones Endogámicos C57BL , Sistemas de Lectura Abierta/genética , Péptidos/metabolismo , Análisis de Secuencia de ADN , Vacuna contra Viruela/genética , Especificidad de la Especie , Bazo/citología , Transfección
18.
J Immunol ; 183(5): 3324-31, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19657092

RESUMEN

A strong cell-mediated immune response is critical for controlling viral infections and is regulated by a number of cytokines, including IL-12 and IL-18. Indeed, some viruses have evolved to specifically target these pathways to counter the host immune response. Orthopoxviruses, including ectromelia virus, encode immune evasion molecules that specifically target IL-18 and IFN-gamma. We hypothesized that IL-12 and IL-18 are pivotal for induction of IFN-gamma production and subsequent generation of an effective host response to ectromelia virus infection. In this study, we demonstrate that absence of both IL-12p40 and IL-18 resulted in increased susceptibility to infection that was associated with skewing of the cytokine response to Th2 and a reduction in NK and CTL responses. The decrease in CTL response correlated with a defect in CD8(+) T cell proliferation and lower numbers of virus-specific CD8(+) T cells. Lack of either IL-12p40 and/or IL-18 was also associated with reduced numbers of CD8(+) T cells at sites of infection and with an increase in the numbers of splenic T regulatory cells. Taken together, our data indicate that IL-12p40 and IL-18 act in concert and play an important antiviral role through the up-regulation of IFN-gamma production and cell-mediated immune responses.


Asunto(s)
Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/inmunología , Subunidad p40 de la Interleucina-12/fisiología , Interleucina-18/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica/genética , Ectromelia Infecciosa/genética , Ectromelia Infecciosa/mortalidad , Predisposición Genética a la Enfermedad/genética , Inmunidad Celular/genética , Inmunidad Innata/genética , Subunidad p40 de la Interleucina-12/antagonistas & inhibidores , Subunidad p40 de la Interleucina-12/deficiencia , Subunidad p40 de la Interleucina-12/genética , Interleucina-18/deficiencia , Interleucina-18/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/patología , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/patología
19.
Immunol Cell Biol ; 88(4): 461-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20066003

RESUMEN

Smallpox was a deadly disease when it was rife yet despite its eradication more than 30 years ago, the possibility of accidental or intentional release has driven research in search of better definitions of correlates of protective immunity. Mousepox, a disease caused by ectromelia virus (ECTV), is arguably one of the best surrogate small animal models for smallpox. Correlates of protection in mousepox are well defined during primary infection, whereas those in a secondary infection, which have definite relevance to vaccination strategies, are less well understood. We previously established that neutralizing antibody (Ab), which is generated far more rapidly during a secondary infection compared with a primary infection, has a key role during a secondary virus challenge. In this study, we show that the route of immunization or the use of homologous or heterologous virus vaccines for immunization does not influence the ability of mice to control high-dose virulent ECTV challenge or to mount a substantial secondary neutralizing Ab response. In contrast, the recall cytotoxic T lymphocyte (CTL) responses generated under these regimes of immunization were varied and did not correlate with virus control. Furthermore, unlike the recall Ab response that was generated rapidly, the kinetics of the secondary antiviral CTL response was no different to a primary infection and peaked only at day 8 post-challenge. This finding further underscores the importance of Ab in conferring protection during secondary poxvirus infection. This information could potentially prove useful in the design of safer and more efficacious vaccines against poxviruses or other diseases using poxvirus vectors.


Asunto(s)
Virus de la Ectromelia , Inmunidad Celular , Inmunidad Humoral , Inmunización , Memoria Inmunológica , Animales , Formación de Anticuerpos , Antivirales/farmacología , Virus de la Ectromelia/efectos de los fármacos , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología
20.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381620

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is an important cause of human illness, including pneumonia and acute exacerbations of chronic obstructive pulmonary disease (COPD). We report here the draft genome of an isolate of NTHi collected from the sputum of a patient presenting with COPD in Tasmania, Australia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA