Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Environ Toxicol ; 39(3): 1494-1504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994244

RESUMEN

As a synthetic androgen, 17α-methyltestosterone (MT) is widely used in aquaculture to induce sex reversal and may pose a potential risk to aquatic organisms. This ecological risk has attracted the attention of many scholars, but it is not comprehensive enough. Thus, the adverse effects of MT on zebrafish (Danio rerio) were comprehensively evaluated from gonadal histology, as well as the mRNA expression levels of 47 genes related to hypothalamic-pituitary-gonadal (HPG) axis, germ cell differentiation, sex determination, and hypothalamus-pituitary-thyroid (HPT) axis. Adult zebrafish with a female/male ratio of 5:7 were exposed to a solvent control (0.001% dimethyl sulfoxide) and three measured concentrations of MT (5, 51 and 583 ng/L) for 50 days. The results showed that MT had no significant histological effects on the ovaries of females, but the frequency of late-mature oocytes (LMO) showed a downward trend, indicating that MT could induce ovarian suppression to a certain extent. The transcriptional expression of activating transcription factor 4b1 (atf4b1), activating transcription factor 4b2 (atf4b2), calcium/calmodulin-dependent protein kinase II delta 1 (camk2d1), calcium/calmodulin-dependent protein kinase II delta 2 (camk2d2) and calcium/calmodulin-dependent protein kinase II inhibitor 2 (camk2n2) genes in the brain of females increased significantly at all treatment groups of MT, and the mRNA expression of forkhead box L2a (foxl2) and ovarian cytochrome P450 aromatase (cyp19a1a) genes in the ovaries were down-regulated by 5 and 583 ng/L group, which would translate into inhibition of oocyte development. As compared to females, MT had relatively little effects on the reproductive system of males, and only the transcriptional alterations of synaptonemal complex protein 3 (sycp3) and 17-alpha-hydroxylase/17,20-lyase (cyp17) genes were observed in the testes, not enough to affect testicular histology. In addition, MT at all treatments strongly increased corticotropin-releasing hormone (crh) transcript in the brain of females, as well as deiodinase 2 (dio2) transcript in the brain of males. The paired box protein 8 (pax8) gene was significantly decreased at 51 or 583 ng/L of MT in both female and male brains. The above results suggest that MT can pose potential adverse effects on the reproductive and thyroid endocrine system of fish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Femenino , Pez Cebra/metabolismo , Metiltestosterona/metabolismo , Metiltestosterona/farmacología , Eje Hipotálamico-Pituitario-Gonadal , Glándula Tiroides/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Gónadas , Expresión Génica , Células Germinativas , ARN Mensajero/metabolismo , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción Activadores/farmacología , Contaminantes Químicos del Agua/metabolismo
2.
Ecotoxicol Environ Saf ; 254: 114722, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870310

RESUMEN

Dexamethasone (DEX) is a synthetic glucocorticoid widely found in a variety of aquatic environments and has potential adverse effects on aquatic organisms. This study was to assess the toxic effects of exposure to different concentrations (0, 5 and 50 µg/L) of DEX for 60 days on adult male mosquitofish (Gambusia affinis). Morphological analyses of skeleton and anal fin, histological effects of testes and livers, and transcriptional expression levels of genes related to reproductive and immune system were determined. The results showed that exposure to DEX significantly increased 14L and 14D values of hemal spines, which suggested DEX could affect skeleton development and result in more masculine characteristics in male fish. In addition, the damage to testis and liver tissue was observed after DEX treatment. It also enhanced mRNA expression of Erß gene in the brain and Hsd11b1 gene in the testis. The findings of this study reveal physiological and transcriptional effects of DEX on male mosquitofish.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Masculino , Reproducción , Ciprinodontiformes/metabolismo , Dexametasona/toxicidad , Dexametasona/análisis , Dexametasona/metabolismo , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 267: 115630, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890255

RESUMEN

Progestins are mainly used in pharmacotherapy and animal husbandry and have received increasing attention as they are widely detected in various aquatic ecosystems. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to different concentrations of norethindrone (NET) (solvent control, 5.0 (L), 50.0 (M), and 500.0 (H) ng/L) for 42 days. Behaviors, morphological parameters, histology of the thyroid, thyroid hormone levels (TSH, T3, and T4), and transcriptional levels of nine genes in the hypothalamic-pituitary-thyroid (HPT) axis were examined. The results showed that NET decreased sociality but increased the anxiety of G. affinis. Sociality makes fish tend to cluster, and anxiety may cause G. affinis to reduce exploration of new environments. Female fish showed hyperplasia, hypertrophy, and glial depletion in their thyroid follicular epithelial cells after NET treatment. The plasma levels of TSH and T4 were significantly reduced, but T3 concentrations were significantly increased in the fish from the H group. In addition, the transcripts of genes (tshb, tshr, tg, dio1, dio2, thrb) in the brains of fish in the M and H treatments were significantly stimulated, while those of trh and pax2a were suppressed. Our results suggest that NET may impact key social behaviors in G. affinis and interfere with the entire thyroid endocrine system, probably via affecting the transcriptional expression of upstream regulators in the HPT axis.


Asunto(s)
Ciprinodontiformes , Glándula Tiroides , Femenino , Animales , Noretindrona , Ecosistema , Ciprinodontiformes/genética , Tirotropina
4.
Environ Toxicol ; 37(5): 1211-1221, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35098644

RESUMEN

Norethindrone (NET) is a widely used synthetic progestin, which appears in water environments and threatens aquatic organisms. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 7.6 and 80.1 ng/L NET for 190 days. The effects of NET on growth, sex differentiation, gonad histology and transcriptional expression profiles of hypothalamic-pituitary-gonadal (HPG) axis-related genes were determined. The results showed that exposure to 80.1 ng/L NET caused an all-male marine medaka population and significantly decreased the growth of males. Exposure to 7.6 ng/L NET increased the ratio of males/females in the marine medaka population, decreased the growth of males and delayed the ovary maturation in females. However, the sperm maturation was accelerated by 7.6 or 80.1 ng/L NET. In females, the transcription levels of cytochrome P450 aromatase (cyp19a1a) and progesterone receptor (pgr) in ovaries, glucocorticoid receptor (gr) and vitellogenin (vtg) in livers were suppressed after exposure to 7.6 ng/L NET, which may cause delayed ovary maturation. In males, NET significantly decreased the transcription levels of follicle stimulating hormone ß (fshß) and Luteinizing hormone ß (lhß)in the brain, Estrogen receptor ß (erß),gr and pgr in the liver, and vitellogenin receptor (vtgr) in the testes, while NET of 80.1 ng/L led to a significant up-regulation of steroidogenic acute regulatory protein (star) in the testes of males. These results showed that NET could influence growth, sex differentiation and gonadal maturation and significantly alter the transcriptional expression levels of HPG axis-related genes.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Expresión Génica , Gónadas , Masculino , Noretindrona/metabolismo , Noretindrona/farmacología , Oryzias/metabolismo , Diferenciación Sexual , Contaminantes Químicos del Agua/metabolismo
5.
Ecotoxicol Environ Saf ; 221: 112432, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166937

RESUMEN

The intensive and long-term use of atrazine in agriculture has resulted in serious environmental pollution and consequently endangered ecosystem and human health. Soil microorganisms play an important role in atrazine degradation. However, their degradation efficiencies are relatively low due to their slow growth and low abundance, and manure amendment as a practice to improve soil nutrients and microbial activities can solve these problems. This study investigated the roles of goat manure in atrazine degradation performance, metabolites and bacterial community structure. Our results showed that atrazine degradation efficiencies in un-amended soils were 26.9-35.7% and increased to 60.9-84.3% in goat manure amended treatments. Hydroxyatrazine pathway was not significantly altered, whereas deethylatrazine and deisopropylatrazine pathways were remarkably enhanced in treatments amended with manure by encouraging the N-dealkylation of atrazine side chains. In addition, goat manure significantly increased soil pH and contents of organic matters and humus, explaining the change of atrazine metabolic pathway. Nocardioides, Sphingomonas and Massilia were positively correlated with atrazine degradation efficiency and three metabolites, suggesting their preference in atrazine contaminated soils and potential roles in atrazine degradation. Our findings suggested that goat manure acts as both bacterial inoculum and nutrients to improve soil microenvironment, and its amendment is a potential practice in accelerating atrazine degradation at contaminated sites, offering an efficient, cheap, and eco-friendly strategy for herbicide polluted soil remediation.


Asunto(s)
Atrazina/metabolismo , Biodegradación Ambiental , Estiércol/microbiología , Microbiología del Suelo , Animales , Atrazina/análisis , Bacterias/metabolismo , Ecosistema , Cabras , Herbicidas/análisis , Herbicidas/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
6.
Environ Toxicol ; 36(4): 598-606, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33247482

RESUMEN

As a natural androgen, androstenedione (AED) may pose potential risks to aquatic organisms due to its ubiquitousness in aquatic environments. Here we assessed the adverse effects of AED on histology of gonads, as well as mRNA expression levels of 34 genes concerned with hypothalamic-pituitary-gonadal (HPG) axis, germ-cell differentiation and sex differentiation in zebrafish (Danio rerio). Adult zebrafish were exposed to solvent control and three measured concentrations of 0.2, 2.3 and 23.7 µg/L AED for 60 days. The results showed that AED did not induce any obvious histological effects in the ovaries and testes. Of the investigated genes, transcriptional expression levels of amh and cyp11c1 genes in the ovaries of females were significantly increased by AED at 2.3 or 23.7 µg/L. However, different exposure concentrations of AED significantly inhibited mRNA expression of gnrh3, atf4b1 and cyp19a1b in the brain of males. In the testes of males, AED at 2.3 µg/L led to a significant induction of sox9b gene, but it at 23.7 µg/L down-regulated nr5a1b gene. These observed transcriptional changes indicated that AED could pose potential androgenic effects in zebrafish.


Asunto(s)
Androstenodiona/toxicidad , Ovario/efectos de los fármacos , Testículo/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Células Germinativas/efectos de los fármacos , Células Germinativas/patología , Masculino , Ovario/metabolismo , Ovario/patología , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/genética , Testículo/metabolismo , Testículo/patología , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Bull Environ Contam Toxicol ; 106(4): 594-599, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33570674

RESUMEN

Dydrogesterone (DDG) acts on the reproduction but also affects the functioning of non-reproductive system. So far, the knowledge about other effects of DDG remains limited. Here we investigated the effects of DDG on the transcription of genes in innate immune and coagulation cascade in zebrafish embryos. The zebrafish embryos were exposed to DDG at 49.0, 527 and 5890 ng L- 1 for 144 hour post fertilization (hpf). The results showed that DDG significantly decreased the transcription of marker genes (e.g. tnfa, il8 and cc-chem) involved in the innate immune response at environmental concentrations. Moreover, DDG also down-regulated the transcription of genes in coagulation cascade (e.g. fga, fgb, fgg and f2). These results indicated that DDG had potential effects on the innate immune and coagulation cascade functions in the early life zebrafish, thus further affecting fish growth and health.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Didrogesterona , Embrión no Mamífero , Inmunidad Innata , Reproducción
8.
Ecotoxicol Environ Saf ; 174: 540-548, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30865910

RESUMEN

Natural and synthetic estrogens and progestins are present in the various aquatic environments, leading to potential exposure of aquatic organisms to their mixtures. However, very little is known about their combined effects in aquatic organisms. The aim of this study was to analyze the effects of binary mixtures of estradiol (E2) and progesterone (P4) by measuring transcriptional changes of up to 42 selected target genes related to hypothalamic-pituitary-gonadal axis and circadian rhythm signaling in zebrafish (Danio rerio) eleuthero-embryos. Zebrafish embryos were exposed to E2 and P4 alone or in combination at concentrations between 45 and 5217 ng L-1 for 96 h post fertilization (hpf). The results showed that P4 led to slight up-regulation of the cyp11a1, hsd17b3 and fshb transcripts, while a strong induction of cyp19a1b and lhb mRNA by E2 was observed. Also, cyp19a1b and lhb mRNAs expression were strongly up-regulated in the mixtures, which were the same to E2 alone. This finding suggests the mixture activity of E2 and P4 followed the independent action in zebrafish eleuthero-embryos. These transcriptional alterations may translate to adverse effects on sex differentiation and reproduction in fish.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Estradiol/toxicidad , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Progesterona/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
9.
Ecotoxicol Environ Saf ; 156: 403-408, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29587208

RESUMEN

This study aimed to determine the effects of Androstenodione (AED) on the transcriptional expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic-pituitary-adrenal (HPA) axes in the zebrafish embryos/larvae. Zebrafish embryos were exposed to 0, 4.0, 45.0, 487.0, and 980.0 ng/L of AED from the day of fertilization to 144 h post fertilization (hpf), during which the transcriptional profiles of key genes related to the HPG and HPA axes were examined daily using quantitative real-time PCR. The AED exposure significantly up-regulated several receptor signaling pathways and the key genes involved in various steps of the steroidogenic pathways were also affected. In addition, the AED exposure could significantly modulate the transcriptional profiles of the other target genes related to hypothalamic and pituitary hormones. The findings of this study suggest that AED, at environmentally relevant concentrations, affects the adrenal endocrine systems and the reproduction of zebrafish by interrupting the HPG and HPA axes.


Asunto(s)
Androstenodiona/farmacología , Gónadas/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Larva/efectos de los fármacos , Hipófisis/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Sistema Endocrino/efectos de los fármacos , Regulación de la Expresión Génica , Gónadas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipófisis/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/efectos de los fármacos , Transcripción Genética , Pez Cebra/embriología
10.
Bull Environ Contam Toxicol ; 99(1): 39-45, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28214940

RESUMEN

Little information has so far been known on the effects of synthetic progestogen dydrogesterone (DDG) in organisms like fish. This study aimed to investigate the effects of DDG on the transcriptional and biochemical alterations in zebrafish eleuthero-embryos. Zebrafish eleuthero-embryos were analyzed for the transcriptional alterations by real-time quantitative PCR (RT-qPCR) and biochemical changes by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FITR) after 144 h exposure to DDG. The results of qPCR analysis showed that DDG exposure significantly suppressed the transcriptions of target genes involved in hypothalamic-pituitary-thyroid (HPT) axis, while it induced the expression of target genes mRNA belonging to hypothalamic-pituitary-gonad (HPG) axis. In addition, ATR-FTIR spectroscopy analysis showed that the biochemical alterations of protein, nucleic acid and lipid were observed following DDG treatment. The finding from this study suggests that DDG exposure could have potential multiple effects in fish.


Asunto(s)
Didrogesterona/toxicidad , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Eleutherococcus , Sistema Endocrino , Congéneres de la Progesterona , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
11.
Ecotoxicol Environ Saf ; 105: 97-102, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793519

RESUMEN

The aim of this study was to evaluate the effects of three metals (Zn, Cd and Pb) on hepatic metallothionein (MT), cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) mRNA expression in the liver of adult female mosquitofish (Gambusia affinis) after 1, 3 or 8d. Both concentration-response and time-course effects of hepatic MT, CYP1A and Vtg at the transcription level were determined by quantitative real-time PCR. The results from this study showed that Zn, Cd and Pb could significantly induced MT, CYP1A and Vtg mRNA expression levels in mosquitofish. In general, this study demonstrated that heavy metals modulate MT, CYP1A and Vtg mRNA expression levels in a metal-, concentration- or time-dependent manner.


Asunto(s)
Ciprinodontiformes/genética , Regulación de la Expresión Génica/efectos de los fármacos , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Sistema Enzimático del Citocromo P-450/genética , Femenino , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Masculino , Metalotioneína/genética , Vitelogeninas/genética
12.
Chemosphere ; 310: 136844, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252902

RESUMEN

Norethisterone (NET), one of the synthetic progestins, is detected with increasing frequency in the water environment and distributed in the ocean, with a potential toxicity risk to marine organisms. However, current studies on the adverse effects of progestins (including NET) in aquatic environments have focused on freshwater organisms, mainly fish. In the present, marine medaka (Oryzias melastigma) larvae were exposed to 91.31 ng/L NET for 10 days, and then the swimming behavior, oxidation-antioxidant-related enzyme activities, sex and thyroid hormone levels, and the gene transcription patterns of the larvae were measured. After NET treatment, medaka larvae were raised in artificial seawater until 5 months of age, and the sex ratio was counted. Ten-day exposure to 91.31 ng/L NET inhibited swimming behavior, of marine medaka larvae, which showed that the time in the resting state was significantly prolonged, while the time in the large motor state was significantly reduced; disrupted oxidative-antioxidant system, significantly up-regulated the enzymatic activities of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px); affected the hormone levels of larvae, lowered 11- keto testosterone (11-KT) and triiodothyronine (T3) concentrations. RNA-seq results showed that 91.31 ng/L NET exposure for 10 days changed the transcript levels of 275 genes, of which 28 were up-regulated and 247 were down-regulated. Differentially expressed genes (DEGs) were mainly significantly enriched in piwi interacting RNA (piRNA), gonadal development, gametogenesis, and steroidogenesis biological processes, etc. After removing NET exposure and returning to breeding for 140 days, a significant increase in male proportions (69.67%) was observed in sexually mature medaka populations in the NET-treated group. These results show that exposure to 91.31 ng/L NET for 10 days can lead to various adverse effects on marine medaka larvae. These findings shed light on the potential ecological risks of synthetic progestins to marine organisms.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Masculino , Antioxidantes , Larva , Noretindrona , Natación , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos
13.
J Hazard Mater ; 443(Pt B): 130330, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36372018

RESUMEN

Biochar and earthworms can accelerate di-(2-ethylhexyl) phthalate (DEHP) degradation in soils. However, little is known regarding the effect of biochar-assisted vermicomposting on soil DEHP degradation and the underlying mechanisms. Therefore, the present study investigated DEHP degradation performance and bacterial community changes in farmland soils using earthworms, biochar, or their combination. Biochar-assisted vermicomposting significantly improved DEHP degradation through initial physical adsorption on biochar and subsequent rapid biodegradation in the soil, earthworm gut, and charosphere. Burkholderiaceae, Pseudomonadaceae, and Flavobacteriaceae were the potential DEHP degraders and were enriched in biochar-assisted vermicomposting. In particularly, Burkholderiaceae and Sphingomonadaceae were enriched in the earthworm gut and charosphere, possibly explaining the mechanism of accelerated DEHP degradation in biochar-assisted vermicomposting. Soil pH, soil organic matter, and humus (humic acid, fulvic acid, and humin) increased by earthworms or biochar enhanced DEHP degradation. These findings imply that biochar-assisted vermicomposting enhances DEHP removal not only through rapid physical sorption but also through the improvement of soil physicochemical characteristics and promotion of degraders in the soil, earthworm gut, and charosphere. Overall, biochar-assisted vermicomposting is a suitable method for the remediation of organic-contaminated farmland soils.


Asunto(s)
Dietilhexil Ftalato , Oligoquetos , Contaminantes del Suelo , Animales , Suelo , Dietilhexil Ftalato/metabolismo , Contaminantes del Suelo/metabolismo , Granjas , Biodegradación Ambiental , Oligoquetos/metabolismo
14.
Sci Total Environ ; 837: 155771, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537514

RESUMEN

The pollution of antibiotic resistance genes (ARGs) carried by microplastics (MPs) is a growing concern. Mangroves are located at the intersection of land and sea and are seriously affected by MP pollution. However, few studies have systematic research evaluating the transmission risk of ARGs carried by MPs in mangroves. We conducted in situ experiments by burying five different MPs (polypropylene, high-density polyethylene, polystyrene, polyethylene glycol terephthalate, and polycaprolactone particles) in mangroves with different surrounding environments. A total of 10 genes in the MPs of mangroves were detected using quantitative real-time polymerase chain reactions, including eight ARGs and two mobile genetic elements (MGEs). The abundance of ARGs in Guanhai park mangroves in living areas (GH) was higher than that of Gaoqiao mangroves in protected areas (GQ) and Beiyue dike mangroves in aquaculture pond areas (BY). Pathogenic bacteria, such as Acinetobacter, Bacillus, and Vibrio were found on the MP surfaces of the mangroves. The number of ARGs carried by multiple drug-resistant bacteria in the GH mangroves was greater than that in the GQ and BY mangroves. Moreover, the ARGs carried by MPs in GH mangroves had the highest potential transmission risk by horizontal gene transfer. Sociometric and environmental factors were the main drivers shaping the distribution characteristics of ARGs and MGEs. Polypropylene and high-density polyethylene particles are preferred substrates for obtaining diffuse ARGs. This study investigated the drivers of ARGs in the MPs of mangroves and provided essential guidance on the use and handling of plastics.


Asunto(s)
Microplásticos , Plásticos , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Polietileno , Polipropilenos
15.
J Hazard Mater ; 425: 127778, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34823960

RESUMEN

Atrazine accumulation in agricultural soil is prone to cause serious environmental problems and pose risks to human health. Vermicomposting is an eco-friendly approach to accelerating atrazine biodegradation, but the roles of earthworm cast in the accelerated atrazine removal remains unclear. This work aimed to investigate the roles of earthworm cast in promoting atrazine degradation performance by comprehensively exploring the change in atrazine metabolites and bacterial communities. Our results showed that earthworm cast amendment significantly increased soil pH, organic matters, humic acid, fulvic acid and humin, and achieved a significantly higher atrazine removal efficiency. Earthworm cast addition also remarkably changed soil microbial communities by enriching potential soil atrazine degraders (Pseudomonadaceae, Streptomycetaceae, and Thermomonosporaceae) and introducing cast microbial degraders (Saccharimonadaceae). Particularly, earthworm casts increased the production of metabolites deethylatrazine and deisopropylatrazine, but not hydroxyatrazine. Some bacterial taxa (Gaiellaceaea and Micromonosporaceae) and humus (humic acid, fulvic acid and humin) were strongly correlated with atrazine metabolism into deisopropylatrazine and deethylatrazine, whereas hydroxyatrazine production was benefited by higher pH. Our findings verified the accelerated atrazine degradation with earthworm cast supplement, providing new insights into the influential factors on atrazine bioremediation in vermicomposting.


Asunto(s)
Atrazina , Herbicidas , Oligoquetos , Contaminantes del Suelo , Animales , Atrazina/análisis , Biodegradación Ambiental , Herbicidas/análisis , Humanos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
16.
J Hazard Mater ; 440: 129803, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027743

RESUMEN

In the field of microplastics research, more accurate standardised methods and analytical techniques still need to be explored. In this study, a new method for the microplastics quantitatively and qualitatively analysis by two-phase (ethyl acetate-water) system combined with confocal Raman spectroscopy was developed. Microplastics can be separated from false-positive microplastics in beach sand and marine sediment, attributing to the hydrophobic-lipophilic interaction (HLI) of the two-phase system. Results show that the recovery rates of complex environment microplastics (polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide 66 (PA 66), polycarbonate (PC) and polyethylene (PE)) are higher than 92.98%. Moreover, the new technique can also be used to detect hydrophobic and lipophilic antibiotics, such as sulfamethoxazole (SMX), erythromycin (EM), madimycin (MD), and josamycin (JOS), which adsorbed on microplastics and are extracted based on the dissolving-precipitating mechanism. This innovative research strategy provides a new scope for further detection of marine environment microplastics and toxic compounds adsorbed on its surface.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Eritromicina , Josamicina , Nigeria , Nylons , Plásticos/análisis , Polietileno/química , Tereftalatos Polietilenos , Polipropilenos/química , Cloruro de Polivinilo , Arena , Espectrometría Raman , Sulfametoxazol , Agua/análisis , Contaminantes Químicos del Agua/química
17.
Chemosphere ; 274: 129797, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33545586

RESUMEN

Glucocorticoids (GCs), including natural hormones as well as synthetic chemicals, can pose influences on physiological performance, development and reproduction of fish. Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, adult female mosquitofish (Gambusia affinis) were treated by DEX at concentrations of 0, 0.5, 5 and 50 µg/L for 60 days. Morphological parameters of anal fin and skeleton, mRNA expression abundance, and histological alterations of liver were investigated to assess effects of DEX on mosquitofish. The results showed that DEX increased number of sections of ray 3 in anal fin and decreased 16L, 15D and 16D in skeletal parameters, which indicates DEX could potentially lead to weak masculinization. Furthermore, transcriptional expression levels of ARα, ARß, ERß, VTGC and CYP19A genes were notably down-regulated by DEX, which will contribute to weak masculinization in females. In addition, the damage to liver tissue was also induced by DEX. Taken together, this research demonstrated that aquatic environments contaminated by DEX have negative effects on mosquitofish at a population level.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Ciprinodontiformes/genética , Dexametasona/toxicidad , Femenino , Expresión Génica , Hígado , Contaminantes Químicos del Agua/toxicidad
18.
J Hazard Mater ; 412: 125212, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33524732

RESUMEN

This study explored the change of tetracycline degradation efficiency, metabolic pathway, soil physiochemical properties and degraders in vermiremediation by two earthworm species of epigeic Eisenia fetida and endogeic Amynthas robustus. We found a significant acceleration of tetracycline degradation in both earthworm treatments, and 4-epitetracycline dehydration pathway was remarkably enhanced only by vermiremediation. Tetracycline degraders from soils, earthworm intestines and casts were different. Ralstonia and Sphingomonas were potential tetracycline degraders in soils and metabolized tetracycline through direct dehydration pathway. Degraders in earthworm casts (Comamonas, Acinetobacter and Stenotrophomonas) and intestines (Pseudomonas and Arthrobacter) dehydrated 4-epitetracycline into 4-epianhydrotetracycline. More bacterial lineages resisting tetracycline were found in earthworm treatments, indicating the adaptation of soil and intestinal flora under tetracycline pressure. Earthworm amendment primarily enhanced tetracycline degradation by neutralizing soil pH and consuming organic matters, stimulating both direct dehydration and epimerization-dehydration pathways. Our findings proved that vermicomposting with earthworms is effective to alter soil microenvironment and accelerate tetracycline degradation, behaving as a potential approach in soil remediation at tetracycline contaminated sites.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Bacterias/genética , Suelo , Contaminantes del Suelo/análisis , Tetraciclina
19.
Environ Pollut ; 275: 116665, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581626

RESUMEN

Climbazole (CBZ) ubiquitously detected in the aquatic environment may disrupt fish reproductive function. Thus far, the previous study has focused on its transcriptional impact of steroidogenesis-related genes on zebrafish, but the underlying toxic mechanism still needs further investigation at the metabolic level. In this study, adult zebrafish were chronically exposed to CBZ at concentrations of 0.1 (corresponding to the real concentration in surface water), 10, and 1000 µg/L and evaluated for reproductive function by egg production, with subsequent ovarian tissue samples taken for histology, metabolomics, and other biochemical analysis. After 28 days' exposure, fecundity was significantly decreased in all exposure groups, with the inhibition of oocytes in varying developmental stages to a certain degree. The decrease in retinoic acid and sex hormones, down-regulated genes important in steroidogenesis, and increase in oxidized/reduced glutathione ratio and occurrence of apoptotic cells were observed in zebrafish ovaries following exposure to CBZ even at environmentally realistic concentrations, suggesting that alternations in steroidogenesis and oxidative stress can play significant roles in CBZ-triggered reproductive toxicity. Besides, mass spectrometry imaging analysis validated the results from metabolomics analysis. Our findings provide novel perspectives for unveiling the mechanism of reproductive dysfunction by CBZ and highlight its risk to fish reproduction.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Femenino , Imidazoles , Metabolómica , Reproducción , Contaminantes Químicos del Agua/toxicidad
20.
Artículo en Inglés | MEDLINE | ID: mdl-32512198

RESUMEN

Synthetic progestin norethindrone (NET) widely used in oral contraceptives, hormonal therapy and livestock farming has been detected in various aquatic ecosystems. Recent studies have shown that NET can cause thyroid endocrine disruption in amphibians. However, studies are still lacking on thyroid axis of fish. In the present study, we investigated thyroid hormone levels (T3 and T4) and transcriptional patterns of 15 genes of the hypothalamic-pituitary-thyroid axis (HPT axis) in adult zebrafish that were exposed to solvent control and three measured concentrations of NET (7, 84 and 810 ng/L) for 90 days. The results indicated that NET significantly lowered T3 and T4 levels in both female and male zebrafish. Transcriptional expression profiles of some of the HPT-axis related genes were disrupted. Specifically, the expression levels of tshb and pax8 have increased significantly while dio2 and ugt1ab have decreased in females. In male, however, tshb expression levels were increased while ttr, ugt1ab, thra and thrb were decreased. The overall results demonstrate that NET disrupts thyroid endocrine system by interfering at multiple sites along HPT axis in adult zebrafish.


Asunto(s)
Anticonceptivos Hormonales Orales/toxicidad , Disruptores Endocrinos/toxicidad , Larva/efectos de los fármacos , Noretindrona/toxicidad , Hormonas Tiroideas/metabolismo , Transcriptoma/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Regulación de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA