Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32142649

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Polimerasa II/genética , Ubiquitinación
2.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
3.
Trends Biochem Sci ; 48(12): 1012-1013, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37775422

RESUMEN

A recent study by Fenstermaker et al. in Nature describes how transcriptionally active RNA polymerase II (Pol II) clings to the genomic tightrope during the passage of the replication fork and rapidly resumes transcription of immature RNA from both strands of nascent DNA, facilitated by protein-protein interactions between the replication and transcription machineries.


Asunto(s)
Replicación del ADN , Transcripción Genética , ADN , ARN Polimerasa II/metabolismo , Genómica , Caminata
4.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31253574

RESUMEN

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Asunto(s)
Proteína BRCA1/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Enzimas Desubicuitinizantes/genética , Chaperonas de Histonas/genética , Neoplasias/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Núcleo Celular/genética , Núcleo Celular/inmunología , Citoplasma/genética , Citoplasma/inmunología , Roturas del ADN de Doble Cadena , Reparación del ADN/inmunología , Enzimas Desubicuitinizantes/inmunología , Células HeLa , Humanos , Inmunidad Celular/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Neoplasias/inmunología , Proteínas Asociadas a Matriz Nuclear/genética , Unión Proteica/genética , Ubiquitina/genética , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
5.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048545

RESUMEN

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
6.
Proc Natl Acad Sci U S A ; 120(11): e2208860120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893274

RESUMEN

XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.


Asunto(s)
Neoplasias Cutáneas , Xerodermia Pigmentosa , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Alelos , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Neoplasias Cutáneas/genética , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo
7.
EMBO Rep ; 23(4): e53639, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156773

RESUMEN

DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI-FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)-mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error-free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error-free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI-deficient cells are exquisitely sensitive to ICL-inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR-mediated ICL repair is defective, and breaks are instead re-ligated by polymerase θ-dependent microhomology-mediated end-joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error-free ICL repair.


Asunto(s)
Anemia de Fanconi , ADN , Daño del ADN , Reparación del ADN , Replicación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos
8.
Mol Cell ; 61(4): 547-562, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26895424

RESUMEN

The response to DNA double-strand breaks (DSBs) requires alterations in chromatin structure to promote the assembly of repair complexes on broken chromosomes. Non-homologous end-joining (NHEJ) is the dominant DSB repair pathway in human cells, but our understanding of how it operates in chromatin is limited. Here, we define a mechanism that plays a crucial role in regulating NHEJ in chromatin. This mechanism is initiated by DNA damage-associated poly(ADP-ribose) polymerase 1 (PARP1), which recruits the chromatin remodeler CHD2 through a poly(ADP-ribose)-binding domain. CHD2 in turn triggers rapid chromatin expansion and the deposition of histone variant H3.3 at sites of DNA damage. Importantly, we find that PARP1, CHD2, and H3.3 regulate the assembly of NHEJ complexes at broken chromosomes to promote efficient DNA repair. Together, these findings reveal a PARP1-dependent process that couples ATP-dependent chromatin remodeling with histone variant deposition at DSBs to facilitate NHEJ and safeguard genomic stability.


Asunto(s)
Cromatina/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Células HEK293 , Humanos , Poli(ADP-Ribosa) Polimerasa-1
9.
Nucleic Acids Res ; 50(7): 3922-3943, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35253893

RESUMEN

An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.


Asunto(s)
Proteína BRCA1 , Reparación del ADN , Recombinación Homóloga , Factores de Transcripción , Proteína 1 de Unión al Supresor Tumoral P53 , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
10.
Nucleic Acids Res ; 50(2): e10, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34734265

RESUMEN

The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes , Expresión Génica , Vectores Genéticos , Microscopía Fluorescente
11.
J Cell Sci ; 134(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33408245

RESUMEN

DNA damage-induced SUMOylation serves as a signal for two antagonizing proteins that both stimulate repair of DNA double-strand breaks (DSBs). Here, we demonstrate that the SUMO-dependent recruitment of the deubiquitylating enzyme ataxin-3 to DSBs, unlike recruitment of the ubiquitin ligase RNF4, additionally depends on poly [ADP-ribose] polymerase 1 (PARP1)-mediated poly(ADP-ribosyl)ation (PARylation). The co-dependence of ataxin-3 recruitment on PARylation and SUMOylation temporally confines ataxin-3 to DSBs immediately after occurrence of DNA damage. We propose that this mechanism ensures that ataxin-3 prevents the premature removal of DNA repair proteins only during the early phase of the DSB response and does not interfere with the subsequent timely displacement of DNA repair proteins by RNF4. Thus, our data show that PARylation differentially regulates SUMO-dependent recruitment of ataxin-3 and RNF4 to DSBs, explaining how both proteins can play a stimulatory role at DSBs despite their opposing activities.


Asunto(s)
Ataxina-3 , Roturas del ADN de Doble Cadena , Poli ADP Ribosilación , Ataxina-3/genética , Línea Celular Tumoral , ADN , Daño del ADN , Reparación del ADN/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/genética
12.
Cell Mol Life Sci ; 78(24): 7925-7942, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731255

RESUMEN

Global genome nucleotide excision repair (GG-NER) eliminates a broad spectrum of DNA lesions from genomic DNA. Genomic DNA is tightly wrapped around histones creating a barrier for DNA repair proteins to access DNA lesions buried in nucleosomal DNA. The DNA-damage sensors XPC and DDB2 recognize DNA lesions in nucleosomal DNA and initiate repair. The emerging view is that a tight interplay between XPC and DDB2 is regulated by post-translational modifications on the damage sensors themselves as well as on chromatin containing DNA lesions. The choreography between XPC and DDB2, their interconnection with post-translational modifications such as ubiquitylation, SUMOylation, methylation, poly(ADP-ribos)ylation, acetylation, and the functional links with chromatin remodelling activities regulate not only the initial recognition of DNA lesions in nucleosomes, but also the downstream recruitment and necessary displacement of GG-NER factors as repair progresses. In this review, we highlight how nucleotide excision repair leaves a mark on chromatin to enable DNA damage detection in nucleosomes.


Asunto(s)
Cromatina/genética , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Nucleosomas/fisiología , Procesamiento Proteico-Postraduccional , Animales , Cromatina/química , Enzimas Reparadoras del ADN/genética , Humanos
13.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31722399

RESUMEN

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Transcripción Genética , Ubiquitina/genética , Línea Celular Transformada , Línea Celular Tumoral , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Rayos Ultravioleta
14.
EMBO J ; 36(8): 1066-1083, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28275011

RESUMEN

The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs.


Asunto(s)
Ataxina-3/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína SUMO-1/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Ataxina-3/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rayos gamma , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína SUMO-1/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Trends Biochem Sci ; 38(6): 321-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23562323

RESUMEN

Distinct types of DNA damage elicit signaling and repair pathways that counteract the adverse effect of DNA lesions to maintain genome stability. The negatively charged polymer poly(ADP-ribose), which is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes, is a post-translational modification that serves as a chromatin-based platform for the recruitment of a variety of repair factors and chromatin-remodeling enzymes. Recent work implicates PARP3 in the efficient joining of DNA double-strand breaks during non-homologous end-joining (NHEJ), whereas PARP1 modulates the repair of UV-induced DNA lesions. Here we discuss emerging roles of PARP enzymes in mechanistically distinct DNA repair pathways and highlight unresolved issues and questions for future research.


Asunto(s)
Daño del ADN , Reparación del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Rayos Ultravioleta
16.
EMBO Rep ; 16(4): 512-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25722289

RESUMEN

SUMOylation plays important roles in the DNA damage response. However, whether it is important for interstrand crosslink repair remains unknown. We report that the SLX4 nuclease scaffold protein is regulated by SUMOylation. We have identified three SUMO interaction motifs (SIMs) in SLX4, mutating all of which abrogated the binding of SLX4 to SUMO-2 and covalent SLX4 SUMOylation. An SLX4 mutant lacking functional SIMs is not recruited to PML nuclear bodies nor stabilized at laser-induced DNA damage sites. Additionally, we elucidated a novel role for PARylation in the recruitment of SLX4 to sites of DNA damage. Combined, our results uncover how SLX4 is regulated by post-translational modifications.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Recombinasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sitios de Unión , Línea Celular Tumoral , ADN/genética , Daño del ADN , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Recombinasas/genética , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación
17.
Nucleic Acids Res ; 43(14): 6919-33, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101254

RESUMEN

The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Reparación del ADN por Recombinación , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Chaperonas de Histonas , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Hum Mutat ; 37(9): 914-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27233470

RESUMEN

XRCC2 genetic variants have been associated with breast cancer susceptibility. However, association studies have been complicated because XRCC2 variants are extremely rare and consist mainly of amino acid substitutions whose grouping is sensitive to misclassification by the predictive algorithms. We therefore functionally characterized variants in XRCC2 by testing their ability to restore XRCC2-DNA repair deficient phenotypes using a cDNA-based complementation approach. While the protein-truncating variants p.Leu117fs, p.Arg215*, and p.Cys217* were unable to restore XRCC2 deficiency, 19 out of 23 missense variants showed no or just a minor (<25%) reduction in XRCC2 function. The remaining four (p.Cys120Tyr, p.Arg91Trp, p.Leu133Pro, and p.Ile95Leu) had a moderate effect. Overall, measured functional effects correlated poorly with those predicted by in silico analysis. After regrouping variants from published case-control studies based on the functional effect found in this study and reanalysis of the prevalence data, there was no longer evidence for an association with breast cancer. This suggests that if breast cancer susceptibility alleles of XRCC2 exist, they are likely restricted to protein-truncating variants and a minority of missense changes. Our study emphasizes the use of functional analyses of missense variants to support variant classification in association studies.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación Missense , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Reparación del ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos
19.
EMBO J ; 31(11): 2511-27, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22531782

RESUMEN

The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autoantígenos/metabolismo , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Cricetinae , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
J Cell Sci ; 126(Pt 4): 889-903, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23264744

RESUMEN

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of γH2AX into damaged chromatin, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA damage. In support of this, we show that SMARCA5 and RNF168 interact in a DNA damage- and PARP-dependent manner. RNF168 became poly(ADP-ribosyl)ated after DNA damage, while RNF168 and poly(ADP-ribose) chains were required for SMARCA5 binding in vivo, explaining how SMARCA5 is linked to the RNF168 ubiquitin cascade. Moreover, SMARCA5 was found to regulate the ubiquitin response by promoting RNF168 accumulation at DSBs, which subsequently facilitates efficient ubiquitin conjugation and BRCA1 assembly. Underlining the importance of these findings, we show that SMARCA5 depletion renders cells sensitive to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5-mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Células HeLa , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA