Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(7): e63580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38511524

RESUMEN

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 20 , Niño , Preescolar , Femenino , Humanos , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cromosomas Humanos Par 20/genética , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Adolescente
2.
Am J Med Genet A ; 194(7): e63531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
3.
J Med Genet ; 60(4): 337-345, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927022

RESUMEN

BACKGROUND: Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS: The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS: Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION: We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).


Asunto(s)
Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Proteínas Hedgehog/genética , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Variaciones en el Número de Copia de ADN/genética , Fenotipo
4.
Am J Med Genet A ; 191(1): 77-83, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271508

RESUMEN

Developmental abnormalities provide a unique opportunity to seek for the molecular mechanisms underlying human organogenesis. Esophageal development remains incompletely understood and elucidating causes for esophageal atresia (EA) in humans would contribute to achieve a better comprehension. Prenatal detection, syndromic classification, molecular diagnosis, and prognostic factors in EA are challenging. Some syndromes have been described to frequently include EA, such as CHARGE, EFTUD2-mandibulofacial dysostosis, Feingold syndrome, trisomy 18, and Fanconi anemia. However, no molecular diagnosis is made in most cases, including frequent associations, such as Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL). This study evaluates the clinical and genetic test results of 139 neonates and 9 fetuses followed-up at the Necker-Enfants Malades Hospital over a 10-years period. Overall, 52 cases were isolated EA (35%), and 96 were associated with other anomalies (65%). The latter group is divided into three subgroups: EA with a known genomic cause (9/148, 6%); EA with Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL) or VACTERL/Oculo-Auriculo-Vertebral Dysplasia (VACTERL/OAV) (22/148, 14%); EA with associated malformations including congenital heart defects, duodenal atresia, and diaphragmatic hernia without known associations or syndromes yet described (65/148, 44%). Altogether, the molecular diagnostic rate remains very low and may underlie frequent non-Mendelian genetic models.


Asunto(s)
Atresia Esofágica , Cardiopatías Congénitas , Deformidades Congénitas de las Extremidades , Fístula Traqueoesofágica , Recién Nacido , Embarazo , Femenino , Humanos , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Estudios Retrospectivos , Fístula Traqueoesofágica/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/complicaciones , Tráquea/anomalías , Columna Vertebral/anomalías , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/complicaciones , Riñón/anomalías , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5
5.
Prenat Diagn ; 43(6): 734-745, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36914926

RESUMEN

OBJECTIVE: We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes. METHODS: We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France. RESULTS: 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated. CONCLUSION: This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs.


Asunto(s)
Síndrome de Williams , Humanos , Femenino , Embarazo , Síndrome de Williams/diagnóstico por imagen , Síndrome de Williams/genética , Síndrome de Williams/complicaciones , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Retardo del Crecimiento Fetal , Ultrasonografía
6.
Nucleic Acids Res ; 49(W1): W93-W103, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019647

RESUMEN

Copy Number Variants (CNVs) are an important cause of rare diseases. Array-based Comparative Genomic Hybridization tests yield a ∼12% diagnostic rate, with ∼8% of patients presenting CNVs of unknown significance. CNVs interpretation is particularly challenging on genomic regions outside of those overlapping with previously reported structural variants or disease-associated genes. Recent studies showed that a more comprehensive evaluation of CNV features, leveraging both coding and non-coding impacts, can significantly improve diagnostic rates. However, currently available CNV interpretation tools are mostly gene-centric or provide only non-interactive annotations difficult to assess in the clinical practice. Here, we present CNVxplorer, a web server suited for the functional assessment of CNVs in a clinical diagnostic setting. CNVxplorer mines a comprehensive set of clinical, genomic, and epigenomic features associated with CNVs. It provides sequence constraint metrics, impact on regulatory elements and topologically associating domains, as well as expression patterns. Analyses offered cover (a) agreement with patient phenotypes; (b) visualizations of associations among genes, regulatory elements and transcription factors; (c) enrichment on functional and pathway annotations and (d) co-occurrence of terms across PubMed publications related to the query CNVs. A flexible evaluation workflow allows dynamic re-interrogation in clinical sessions. CNVxplorer is publicly available at http://cnvxplorer.com.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedades Raras/genética , Programas Informáticos , Animales , Expresión Génica , Genoma Humano , Humanos , Internet , Ratones Noqueados , Fenotipo , Mapeo de Interacción de Proteínas , Enfermedades Raras/diagnóstico , Secuencias Reguladoras de Ácidos Nucleicos
7.
Clin Genet ; 101(3): 307-316, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866188

RESUMEN

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Deleción Cromosómica , Inversión Cromosómica , Cromosomas Humanos Par 8 , Cuerpo Calloso/diagnóstico por imagen , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Leucoencefalopatías/genética , Fenotipo , Trisomía
8.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34894355

RESUMEN

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Asunto(s)
Proteínas de Unión al Calcio/análisis , Trastornos de los Cromosomas/complicaciones , Proteínas de la Membrana/análisis , Adulto , Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Trisomía/genética , Virulencia/genética , Virulencia/fisiología
9.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698748

RESUMEN

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Metilación de ADN , Proteínas de Homeodominio/genética , Repeticiones de Microsatélite/genética , Células Cultivadas , Reprogramación Celular/genética , Atresia de las Coanas/genética , Atresia de las Coanas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Microftalmía/genética , Microftalmía/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Nariz/anomalías
10.
Am J Hum Genet ; 100(2): 352-363, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132691

RESUMEN

Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.


Asunto(s)
Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/genética , Adolescente , Animales , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Eliminación de Gen , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Polimorfismo de Nucleótido Simple , Pez Cebra/genética
12.
J Med Genet ; 56(8): 526-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30923172

RESUMEN

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Asunto(s)
Aberraciones Cromosómicas , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Reordenamiento Génico , Estudios de Asociación Genética , Fenotipo , Secuenciación Completa del Genoma , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Relación Estructura-Actividad , Translocación Genética , Adulto Joven
13.
Clin Genet ; 96(3): 246-253, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31090057

RESUMEN

Two distinct genomic disorders have been linked to Xq28-gains, namely Xq28-duplications including MECP2 and Int22h1/Int22h2-mediated duplications involving RAB39B. Here, we describe six unrelated patients, five males and one female, with Xq28-gains distal to MECP2 and proximal to the Int22h1/Int22h2 low copy repeats. Comparison with patients carrying overlapping duplications in the literature defined the MidXq28-duplication syndrome featuring intellectual disability, language impairment, structural brain malformations, microcephaly, seizures and minor craniofacial features. The duplications overlapped for 108 kb including FLNA, RPL10 and GDI1 genes, highly expressed in brain and candidates for the neurologic phenotype.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos X , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteínas de Unión al GTP rab/genética , Adolescente , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Adulto Joven
14.
Prenat Diagn ; 39(11): 1026-1034, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299102

RESUMEN

OBJECTIVE: Neural tube defects (NTDs) are one of the most common congenital anomalies caused by a complex interaction of many genetic and environmental factors. In about 10% of cases, NTDs are associated with genetic syndromes or chromosomal anomalies. Among these, SOX3 duplication has been reported in some isolated cases. The phenotype associated with this microduplication is variable and includes myelomeningocele (MMC) in both sexes as well as hypopituitarism and cognitive impairment in males. In order to determine the prevalence of this anomaly in fetuses with MMC, a retrospective cohort of fetuses with MMC was analyzed by quantitative PCR (qPCR) targeting SOX3 locus. METHODS: The detection of an SOX3 microduplication by chromosomal microarray analysis (CMA) in two female fetuses with MMC prompted us to analyze retrospectively by qPCR this gene in a cohort of 53 fetuses with MMC. RESULTS: In addition to our two initial cases, one fetus harboring an Xq27.1q28 duplication that encompasses the SOX3 gene was detected. CONCLUSION: Our data demonstrate that SOX3 duplication is a genomic imbalance involved in the pathogenesis of NTDs. In addition, our survey highlights the importance of CMA testing in fetuses with NTDs to enable genetic counseling upstream of any considerations of in utero fetal surgery.


Asunto(s)
Variaciones en el Número de Copia de ADN , Meningomielocele/genética , Factores de Transcripción SOXB1/genética , Adulto , Análisis Citogenético , Femenino , Duplicación de Gen , Humanos , Meningomielocele/diagnóstico , Embarazo , Diagnóstico Prenatal , Estudios Retrospectivos , Adulto Joven
15.
Prenat Diagn ; 39(10): 871-882, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31172545

RESUMEN

OBJECTIVE/METHOD: 1p36 deletion syndrome is considered to be the most common deletion after 22q11.2 deletion. It is characterized by specific facial features, developmental delay, and organ defects. The primary objective of the present multicenter study was to survey all the cases of 1p36 deletion diagnosed prenatally by French cytogenetics laboratories using a chromosomal microarray. We then compared these new cases with the literature data. RESULTS: Ten new cases were reported. On average, the 1p36 deletion was diagnosed at 19 weeks of gestation. The size of the deletion ranged from 1.6 to 16 Mb. The 1p36 deletion was the only chromosomal abnormality in eight cases and was associated with a complex chromosome 1 rearrangement in the two remaining cases. The invasive diagnostic procedure had always been prompted by abnormal ultrasound findings: elevated nuchal translucency, structural brain abnormality, retrognathia, or a cardiac defect. Multiple anomalies were present in all cases. DISCUSSION: We conclude that 1p36 deletion is not associated with any specific prenatal signs. We suggest that a prenatal observation of ventriculomegaly, congenital heart defect, or facial dysmorphism should prompt the clinician to consider a diagnosis of 1p36 deletion syndrome.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Diagnóstico Prenatal , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Cromosomas Humanos Par 1/genética , Femenino , Francia/epidemiología , Humanos , Cariotipificación/métodos , Análisis por Micromatrices/métodos , Embarazo , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/estadística & datos numéricos , Estudios Retrospectivos , Adulto Joven
16.
Prenat Diagn ; 39(6): 464-470, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30896039

RESUMEN

OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.


Asunto(s)
Pruebas Genéticas/métodos , Cardiopatías Congénitas/genética , Análisis por Micromatrices/métodos , Diagnóstico Prenatal/métodos , Adulto , Aberraciones Cromosómicas , Cromosomas/química , Cromosomas/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Femenino , Feto/química , Feto/metabolismo , Francia , Cardiopatías Congénitas/diagnóstico , Humanos , Cariotipificación , Embarazo , Estudios Retrospectivos , Síndrome
17.
Am J Hum Genet ; 97(5): 691-707, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544804

RESUMEN

The genomic duplication associated with Potocki-Lupski syndrome (PTLS) maps in close proximity to the duplication associated with Charcot-Marie-Tooth disease type 1A (CMT1A). PTLS is characterized by hypotonia, failure to thrive, reduced body weight, intellectual disability, and autistic features. CMT1A is a common autosomal dominant distal symmetric peripheral polyneuropathy. The key dosage-sensitive genes RAI1 and PMP22 are respectively associated with PTLS and CMT1A. Recurrent duplications accounting for the majority of subjects with these conditions are mediated by nonallelic homologous recombination between distinct low-copy repeat (LCR) substrates. The LCRs flanking a contiguous genomic interval encompassing both RAI1 and PMP22 do not share extensive homology; thus, duplications encompassing both loci are rare and potentially generated by a different mutational mechanism. We characterized genomic rearrangements that simultaneously duplicate PMP22 and RAI1, including nine potential complex genomic rearrangements, in 23 subjects by high-resolution array comparative genomic hybridization and breakpoint junction sequencing. Insertions and microhomologies were found at the breakpoint junctions, suggesting potential replicative mechanisms for rearrangement formation. At the breakpoint junctions of these nonrecurrent rearrangements, enrichment of repetitive DNA sequences was observed, indicating that they might predispose to genomic instability and rearrangement. Clinical evaluation revealed blended PTLS and CMT1A phenotypes with a potential earlier onset of neuropathy. Moreover, additional clinical findings might be observed due to the extra duplicated material included in the rearrangements. Our genomic analysis suggests replicative mechanisms as a predominant mechanism underlying PMP22-RAI1 contiguous gene duplications and provides further evidence supporting the role of complex genomic architecture in genomic instability.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Cromosomas Humanos Par 17/genética , Duplicación de Gen , Reordenamiento Génico , Proteínas de la Mielina/genética , Factores de Transcripción/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Preescolar , Trastornos de los Cromosomas/patología , Hibridación Genómica Comparativa , Femenino , Estudios de Seguimiento , Genoma Humano , Genómica/métodos , Humanos , Lactante , Masculino , Modelos Genéticos , Fenotipo , Pronóstico , Recombinación Genética , Transactivadores
18.
Am J Med Genet A ; 176(9): 1981-1984, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30178921

RESUMEN

The clinical presentation of distal duplications of the long arm of chromosome (chr) 16 is currently not well described. Only one case of microduplication of chr16q22.1 and another involving the chr16q22.1q23.1 region have been reported so far. Here, using array comparative genomic hybridization, we identified a second case of chr16q22.1q23.1 duplication in a Vietnamese boy, who shares significant clinical phenotype with the previously described case. Aside from developmental delay, intellectual disability and midface hypoplasia, our patient also displays a forked tongue, visual impairment and external ptosis. Our report further expands the clinical spectrum associated with duplication of this region.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 1 , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Adolescente , Hibridación Genómica Comparativa , Facies , Estudios de Asociación Genética , Humanos , Masculino , Fenotipo , Vietnam
19.
J Am Soc Nephrol ; 28(10): 2901-2914, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28566479

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/genética , Anomalías Urogenitales/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exoma , Femenino , Humanos , Masculino , Factor de Transcripción 1 de la Leucemia de Células Pre-B
20.
JAMA ; 320(6): 557-565, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30120476

RESUMEN

Importance: Cell-free DNA (cfDNA) tests are increasingly being offered to women in the first trimester of pregnancies at a high risk of trisomy 21 to decrease the number of required invasive fetal karyotyping procedures and their associated miscarriages. The effect of this strategy has not been evaluated. Objective: To compare the rates of miscarriage following invasive procedures only in the case of positive cfDNA test results vs immediate invasive testing procedures (amniocentesis or chorionic villus sampling) in women with pregnancies at high risk of trisomy 21 as identified by first-trimester combined screening. Design, Setting, and Participants: Randomized clinical trial conducted from April 8, 2014, to April 7, 2016, in 57 centers in France among 2111 women with pregnancies with a risk of trisomy 21 between 1 in 5 and 1 in 250 following combined first-trimester screening. Interventions: Patients were randomized to receive either cfDNA testing followed by invasive testing procedures only when cfDNA tests results were positive (n = 1034) or to receive immediate invasive testing procedures (n = 1017). The cfDNA testing was performed using an in-house validated method based on next-generation sequencing. Main Outcomes and Measures: The primary outcome was number of miscarriages before 24 weeks' gestation. Secondary outcomes included cfDNA testing detection rate for trisomy 21. The primary outcome underwent 1-sided testing; secondary outcomes underwent 2-sided testing. Results: Among 2051 women who were randomized and analyzed (mean age, 36.3 [SD, 5.0] years), 1997 (97.4%) completed the trial. The miscarriage rate was not significantly different between groups at 8 (0.8%) vs 8 (0.8%), for a risk difference of -0.03% (1-sided 95% CI, -0.68% to ∞; P = .47). The cfDNA detection rate for trisomy 21 was 100% (95% CI, 87.2%-100%). Conclusions and Relevance: Among women with pregnancies at high risk of trisomy 21, offering cfDNA screening, followed by invasive testing if cfDNA test results were positive, compared with invasive testing procedures alone, did not result in a significant reduction in miscarriage before 24 weeks. The study may have been underpowered to detect clinically important differences in miscarriage rates. Trial Registration: ClinicalTrials.gov Identifier: NCT02127515.


Asunto(s)
Aborto Espontáneo/etiología , Amniocentesis/efectos adversos , Ácidos Nucleicos Libres de Células/sangre , Muestra de la Vellosidad Coriónica/efectos adversos , Síndrome de Down/diagnóstico , Pruebas Genéticas/métodos , Resultado del Embarazo/epidemiología , Aborto Espontáneo/epidemiología , Aborto Espontáneo/prevención & control , Adulto , Trastornos de los Cromosomas/diagnóstico , Femenino , Muerte Fetal , Humanos , Nacimiento Vivo , Embarazo , Segundo Trimestre del Embarazo , Factores de Riesgo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA