Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Pharmacol ; 105(3): 121-130, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38182433

RESUMEN

Multiple sclerosis is an inflammatory and degenerative disease characterized by different clinical courses including relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS). A hallmark of patients with multiple sclerosis (pwMS) includes a putative autoimmune response, which results in demyelination and neuroaxonal damage in the central nervous system. Sphingolipids in cerebrospinal fluid (CSF) have been proposed as potential biomarkers reflective of disease activity in pwMS. Hence, sensitive methods to accurately quantify sphingolipids in CSF are needed. In this study, we report the development of a sensitive high-throughput multiplexed liquid chromatography coupled to a tandem mass spectrometry method to perform quantitation on 14 species of sphingolipids in human CSF. We applied this method to measure CSF sphingolipids in healthy controls (n = 10), PPMS (n = 27), and RMS (n = 17) patients before and after ocrelizumab treatment. The median CSF levels of the 14 sphingolipids measured herein was higher in PPMS (17.2 ng/mL) and RMS (17.6 ng/mL) when compared with the healthy controls (13.8 ng/mL). Levels of sphingolipids were decreased by 8.6% at week 52 after treatment with ocrelizumab in RMS patients but not in PPMS patients. Specifically, C16 glucosylceramide (-26%; P = 0.004) and C18 ceramides (-13%; P = 0.042) decreased from baseline in RMS patients. Additionally, in PPMS patients C16 glucosylceramide levels correlated with CSF neurofilament heavy levels at baseline (Rho =0.532; P = 0.004) and after treatment (Rho =0.424; P = 0.028). Collectively, these results indicate that CSF sphingolipid levels are altered in pwMS and treatment with ocrelizumab results in significant shifts in the sphingolipid profile that may reflect a reduction in disease activity supporting further investigation into sphingolipids as tools to monitor disease state. SIGNIFICANCE STATEMENT: This study describes the development of a new method to measure 14 sphingolipid species in CSF. These results demonstrate that sphingolipids levels are elevated in CSF from pwMS compared to healthy controls. Distinct sphingolipid signatures were observed between patients with different clinical disease courses, and these lipid signatures changed after treatment with ocrelizumab, especially in RMS patients. This method enables further investigation into the role of sphingolipids as candidate biomarkers in pwMS and other central nervous system disorders.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esfingolípidos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Glucosilceramidas , Espectrometría de Masas en Tándem , Biomarcadores/líquido cefalorraquídeo
2.
J Proteome Res ; 18(3): 1264-1277, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30525646

RESUMEN

Lupus nephritis (LN) is a severe clinical manifestation of systemic lupus erythematosus (SLE) associated with significant morbidity and mortality. Assessment of severity and activity of renal involvement in SLE requires a kidney biopsy, an invasive procedure with limited prognostic value. Noninvasive biomarkers are needed to inform treatment decisions and to monitor disease activity. Proteinuria is associated with disease progression in LN; however, the composition of the LN urinary proteome remains incompletely characterized. To address this, we profiled LN urine samples using complementary mass spectrometry-based methods:  protein gel fractionation, chemical labeling using tandem mass tags, and data-independent acquisition. Combining results from these approaches yielded quantitative information on 2573 unique proteins in urine from LN patients. A multiple-reaction monitoring (MRM) method was established to confirm eight proteins in an independent cohort of LN patients, and seven proteins (transferrin, α-2-macroglobulin, haptoglobin, afamin, α-1-antitrypsin, vimentin, and ceruloplasmin) were confirmed to be elevated in LN urine compared to healthy controls. In this study, we demonstrate that deep mass spectrometry profiling of a small number of patient samples can identify high-quality biomarkers that replicate in an independent LN disease cohort. These biomarkers are being used to inform clinical biomarker strategies to support longitudinal and interventional studies focused on evaluating disease progression and treatment efficacy of novel LN therapeutics.


Asunto(s)
Biomarcadores/orina , Lupus Eritematoso Sistémico/orina , Nefritis Lúpica/orina , Proteoma/genética , Adolescente , Adulto , Anciano , Biopsia , Proteínas Portadoras/orina , Ceruloplasmina/orina , Femenino , Glicoproteínas/orina , Haptoglobinas/orina , Humanos , Riñón/metabolismo , Riñón/patología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Nefritis Lúpica/genética , Nefritis Lúpica/patología , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Pronóstico , Albúmina Sérica Humana/orina , Transferrina/orina , Vimentina/orina , Adulto Joven , alfa 1-Antitripsina/orina , alfa-Macroglobulinas/orina
3.
Clin Proteomics ; 15: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323719

RESUMEN

Advances in the field of targeted proteomics and mass spectrometry have significantly improved assay sensitivity and multiplexing capacity. The high-throughput nature of targeted proteomics experiments has increased the rate of data production, which requires development of novel analytical tools to keep up with data processing demand. Currently, development and validation of targeted mass spectrometry assays require manual inspection of chromatographic peaks from large datasets to ensure quality, a process that is time consuming, prone to inter- and intra-operator variability and limits the efficiency of data interpretation from targeted proteomics analyses. To address this challenge, we have developed TargetedMSQC, an R package that facilitates quality control and verification of chromatographic peaks from targeted proteomics datasets. This tool calculates metrics to quantify several quality aspects of a chromatographic peak, e.g. symmetry, jaggedness and modality, co-elution and shape similarity of monitored transitions in a peak group, as well as the consistency of transitions' ratios between endogenous analytes and isotopically labeled internal standards and consistency of retention time across multiple runs. The algorithm takes advantage of supervised machine learning to identify peaks with interference or poor chromatography based on a set of peaks that have been annotated by an expert analyst. Using TargetedMSQC to analyze targeted proteomics data reduces the time spent on manual inspection of peaks and improves both speed and accuracy of interference detection. Additionally, by allowing the analysts to customize the tool for application on different datasets, TargetedMSQC gives the users the flexibility to define the acceptable quality for specific datasets. Furthermore, automated and quantitative assessment of peak quality offers a more objective and systematic framework for high throughput analysis of targeted mass spectrometry assay datasets and is a step towards more robust and faster assay implementation.

4.
Methods Mol Biol ; 2603: 245-257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36370285

RESUMEN

Proteins are integral to biological systems and functions. Identifying and quantifying proteins can therefore offer systems-wide insights into protein-protein interactions, cellular signaling, and biological pathway activity. The use of quantitative proteomics has become a method of choice for identifying and quantifying proteins in complex matrices. Proteomics allows researchers to survey hundreds to thousands of proteins in a less biased manner than classical antibody-based protein capture strategies. Typically, discovery approaches have used data-dependent acquisition (DDA) methods, but this approach suffers from stochasticity that compromises quantitation. Recent developments in data-independent acquisition (DIA) proteomics workflows enable proteomic profiling of thousands of samples with increased peak picking consistency making it an excellent candidate for discovering and assessing biomarkers in clinical samples. However, quantitation of peptides from DIA datasets is computationally intensive, and guidelines on how to establish DIA methods are lacking. Method development and optimization require novel tools to visualize and filter DIA datasets appropriately. Here, a protocol and novel script workflow for the optimization of quantitative DIA methods using stable isotope labeling of amino acids in culture (SILAC) are presented. This protocol includes steps for cell growth and labeling, peptide digestion and preparation, and optimization of quantitative DIA methods. In addition, important steps for (1) computational analysis to identify and quantify peptides, (2) data visualizations to identify the linear abundance ranges for all peptides in the sample, and (3) descriptions of how to find high confidence quantitation abundance thresholds are described herein.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Marcaje Isotópico/métodos , Proteoma/metabolismo , Espectrometría de Masas/métodos , Péptidos/análisis
5.
Protein Expr Purif ; 79(1): 102-10, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21664975

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) form ligand-gated ion channels that mediate fast signal transmission at synapses. These receptors are members of a large family of pentameric ion channels that are of active medical interest. An expression system utilizing a chimerical construct of the N-terminal extracellular ligand binding domain of alpha7 type nAChR and the C-terminal transmembrane portion of 5HT3 type receptor resulted high level of expressions. Two ligand affinity chromatography purification methods for this receptor have been developed. One method relies on the covalent immobilization of a high affinity small molecule alpha7 nAChR agonist, (R)-5-(4-aminophenyl)-N-(quinuclidin-3-yl) furan-2-carboxamide, and the other uses mono biotinylated alpha-bungarotoxin, an antagonist, that forms a quasi-irreversible complex with alpha7 nAChR. Detergent solubilized alpha7/5HT(3) chimeric receptors were selectively retained on the affinity resins and could be eluted with free ligand or biotin. The proteins purified by both methods were characterized by gel electrophoresis, mass spectra, amino acid composition analysis, and N-terminal sequence determination. These analyses confirmed the isolation of a mature alpha7/5HT(3) receptor with the signal peptide removed. These results suggest a scalable path forward to generate multi-milligram amounts of purified complexes for additional studies including protein crystallization.


Asunto(s)
Receptores Nicotínicos/genética , Receptores Nicotínicos/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Cromatografía de Afinidad , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Unión Proteica , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ultracentrifugación , Receptor Nicotínico de Acetilcolina alfa 7
6.
J Immunother Cancer ; 9(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827905

RESUMEN

BACKGROUND: CD8+ tissue-resident memory T (TRM) cells, marked by CD103 (ITGAE) expression, are thought to actively suppress cancer progression, leading to the hypothesis that their presence in tumors may predict response to immunotherapy. METHODS: Here, we test this by combining high-dimensional single-cell modalities with bulk tumor transcriptomics from 1868 patients enrolled in lung and bladder cancer clinical trials of atezolizumab (anti-programmed cell death ligand 1 (PD-L1)). RESULTS: ITGAE was identified as the most significantly upregulated gene in inflamed tumors. Tumor CD103+ CD8+ TRM cells exhibited a complex phenotype defined by the expression of checkpoint regulators, cytotoxic proteins, and increased clonal expansion. CONCLUSIONS: Our analyses indeed demonstrate that the presence of CD103+ CD8+ TRM cells, quantified by tracking intratumoral CD103 expression, can predict treatment outcome, suggesting that patients who respond to PD-1/PD-L1 blockade are those who exhibit an ongoing antitumor T-cell response.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD/genética , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Cadenas alfa de Integrinas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/efectos adversos , Antígeno B7-H1/inmunología , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Fenotipo , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Tiempo , Resultado del Tratamiento , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología
7.
Open Forum Infect Dis ; 7(5): ofaa122, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32420403

RESUMEN

BACKGROUND: Biomarkers are needed for early identification of patients at risk of severe complications from influenza infection, including prolonged respiratory failure and death. Eicosanoids are bioactive lipid mediators with pro- and anti-inflammatory properties produced in response to infection. This study assessed the relationships between the host bioactive lipid response, influenza viral load, and clinical outcomes. METHODS: Influenza-positive, intubated children ≤18 years old were enrolled across 26 US pediatric intensive care units (PICUs). Mass spectrometry was used to measure >100 lipid metabolites in endotracheal and nasopharyngeal samples. Influenza viral load was measured by quantitative polymerase chain reaction. RESULTS: Age and bacterial co-infection were associated with multiple bioactive lipids (P < .05). Influenza viral load was lower in patients with bacterial co-infection compared with those without, and pro-inflammatory bioactive lipids positively correlated with viral load in bacterially co-infected children (P < .05). Lipids associated with disease resolution correlated with viral load in patients without bacterial co-infection (P < .01). After adjusting for age and bacterial co-infection status, elevated pro- and anti-inflammatory lipids measured early in the intensive care unit course were associated with higher mortality, whereas influenza viral load and endotracheal cytokine levels were not associated with clinical outcomes. Prostaglandin E2, arachidonic acid, docosahexaenoic acid, and 12-hydroxyeicosatetraenoic acid measured within 72 hours of PICU admission predicted death or prolonged (≥28 days) mechanical ventilator support (area under the curve, 0.72-0.79; P < .02) not explained by admission illness severity. CONCLUSIONS: Children with influenza-related complications have early bioactive lipid responses that may reflect lung disease severity. Respiratory bioactive lipids are candidate prognostic biomarkers to identify children with the most severe clinical outcomes.

8.
Methods Mol Biol ; 1989: 35-45, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31077097

RESUMEN

Signal interference or overlap in mass cytometry is minimal compared to flow cytometry but must still be considered for optimal panel design and assay sensitivity. Here we describe a procedure for evaluating signal interference dynamics in the context of a 25-parameter core immunophenotyping panel. Specifically, a mass-minus-many (MMM) approach was used to assess background signals in "empty" or "blank" channels intended for further customization. Through this approach cell type-specific variability in signal background is revealed. Further panel customization can thus be performed with an understanding of cell type and channel-specific background levels to enable rational panel design and the objective delineation of gating thresholds during analysis.


Asunto(s)
Biomarcadores/análisis , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Leucocitos Mononucleares/citología , Espectrometría de Masas/métodos , Análisis de la Célula Individual/métodos , Humanos , Relación Señal-Ruido
9.
Front Immunol ; 10: 1194, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231371

RESUMEN

Dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has emerged as a popular tool for visualizing high-parameter single-cell data. While this approach has obvious potential for data visualization it remains unclear how t-SNE analysis compares to conventional manual hand-gating in stratifying and quantitating the frequency of diverse immune cell populations. We applied a comprehensive 38-parameter mass cytometry panel to human blood and compared the frequencies of 28 immune cell subsets using both conventional bivariate and t-SNE-guided manual gating. t-SNE analysis was capable of stratifying every general cellular lineage and most sub-lineages with high correlation between conventional and t-SNE-guided cell frequency calculations. However, specific immune cell subsets delineated by the manual gating of continuous variables were not fully separated in t-SNE space thus causing discrepancies in subset identification and quantification between these analytical approaches. Overall, these studies highlight the consistency between t-SNE and conventional hand-gating in stratifying general immune cell lineages while demonstrating that particular cell subsets defined by conventional manual gating may be intermingled in t-SNE space.


Asunto(s)
Citometría de Flujo/métodos , Análisis de la Célula Individual/métodos , Linfocitos T/citología , Linfocitos T/inmunología , Humanos , Análisis de Componente Principal
10.
Anal Biochem ; 380(1): 68-76, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18539125

RESUMEN

Measurement of nitrotyrosine levels in biological fluids can serve as a biomarker for oxidative/nitrative damage arising from formation of reactive nitrogen species, including peroxynitrite. Peroxynitrite is formed by the reaction of the superoxide radical (O2.-) with the nitric oxide radical (.NO) that is generated by nitric oxide synthase (NOS). This article describes an immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure 3-nitrotyrosine at very low (picomolar) levels. Incorporation of a pronase digestion step prior to the immunoaffinity LC-MS/MS allowed for measuring not only free amino acid but also protein 3-nitrotyrosine in biological fluids. The use of an in-line antibody column allowed for increased specificity as compared with previously reported assays. The assay is linear over a range of 5 to 500 pg/ml (0.022-2.20 nM, r(2)=0.9987), with the lower detection limit being 5 pg/ml. In addition to its increased sensitivity and specificity, this assay showed great nitrotyrosine recovery from biological fluids when either nitrotyrosine or nitrotyrosine-containing peptides were added exogenously. The utility of this assay for nitrotyrosine as a clinically translatable biomarker was demonstrated by quantifying both free and total nitrotyrosine levels in various biological fluids, including urine, plasma, serum, cerebrospinal fluid (CSF), and synovial fluid (SF) from both preclinical species and human subjects. Thus, whether in an animal model of human disease or in a clinical setting, the quantification of nitrotyrosine levels should provide support for NOS-driven pathology and its blockade following therapeutic intervention.


Asunto(s)
Biomarcadores/análisis , Biomarcadores/metabolismo , Líquidos Corporales/química , Cromatografía de Afinidad/métodos , Espectrometría de Masas en Tándem/métodos , Tirosina/análogos & derivados , Anticuerpos/inmunología , Modelos Lineales , Pronasa/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Líquido Sinovial/química , Tirosina/análisis , Tirosina/inmunología , Tirosina/metabolismo
11.
Mol Neurodegener ; 9: 22, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24902845

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia affecting greater than 26 million people worldwide. Although cerebrospinal fluid (CSF) levels of Aß42, tau, and p-tau181 are well established as diagnostic biomarkers of AD, there is a need for additional CSF biomarkers of neuronal function that continue to change during disease progression and could be used as pharmacodynamic measures in clinical trials. Multiple proteomic discovery experiments have reported a range of CSF biomarkers that differ between AD and control subjects. These potential biomarkers represent multiple aspects of the disease pathology. The performance of these markers has not been compared with each other, and their performance has not been evaluated longitudinally. RESULTS: We developed a targeted-proteomic, multiple reaction monitoring (MRM) assay for the absolute quantitation of 39 peptides corresponding to 30 proteins. We evaluated the candidate biomarkers in longitudinal CSF samples collected from aged, cognitively-normal control (n = 10), MCI (n = 5), and AD (n = 45) individuals (age > 60 years). We evaluated each biomarker for diagnostic sensitivity, longitudinal consistency, and compared with CSF Aß42, tau, and p-tau181. Four of 28 quantifiable CSF proteins were significantly different between aged, cognitively-normal controls and AD subjects including chitinase-3-like protein 1, reproducing published results. Four CSF markers demonstrated significant longitudinal change in AD: Amyloid precursor protein, Neuronal pentraxin receptor, NrCAM and Chromogranin A. Robust correlations were observed within some subgroups of proteins including the potential disease progression markers. CONCLUSION: Using a targeted proteomics approach, we confirmed previous findings for a subset of markers, defined longitudinal performance of our panel of markers, and established a flexible proteomics method for robust multiplexed analyses.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Am J Physiol Endocrinol Metab ; 286(2): E252-60, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14570702

RESUMEN

Thiazolidinediones address underlying causes of type 2 diabetes, although their mechanism of action is not clearly understood. The compounds are thought to function as direct activators of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor-gamma), although pioglitazone, the weaker agonist of the two thiazolidinediones now in clinical use, seems to have more useful effects on circulating lipids. We have used tritiated pioglitazone and a photoaffinity cross-linker to identify a novel binding site in mitochondria. A saturable binding site for [3H]pioglitazone was solubilized from the membranes with CHAPS and migrated as a large complex by size exclusion chromatography. The binding correlated with a <17-kDa protein (m17), marked by a photoaffinity cross-linker, in both subcellular location and selectivity of competition by analogs. The protein was isolated and identified by mass spectrometry analysis and NH2-terminal sequencing. Three synthetic peptides with potential antigenic properties were synthesized from the predicted nontransmembrane sequence to generate antibodies in rabbits. Western blots show that this protein, which we have termed "mitoNEET," is located in the mitochondrial fraction of rodent brain, liver, and skeletal muscle, showing the identical subcellular location and migration on SDS-PAGE as the protein cross-linked specifically by the thiazolidinedione photoprobe. The protein exists in low levels in preadipocytes, and expression increases exponentially in differentiated adipocytes. The synthetic protein bound to solid phase associated with a complex of solubilized mitochondrial proteins, including the trifunctional beta-oxidation protein. It is possible that thiazolidinedione modification of the function of the mitochondrial target may contribute to lipid lowering and/or antidiabetic actions.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Células 3T3 , Adipocitos/metabolismo , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión , Unión Competitiva , Encéfalo/metabolismo , Bovinos , Reactivos de Enlaces Cruzados , Proteínas de Unión a Hierro/genética , Hígado/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Pioglitazona , Conejos , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Tiazolidinedionas/metabolismo , Tritio
13.
Bioconjug Chem ; 15(2): 333-43, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15025529

RESUMEN

Screening of our compound collection identified PNU-92560, a 2-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxamide, as a novel antibacterial agent. Extensive analogue development identified that the 2-position of the thiadiazole could be functionalized with a linker that would allow the compound to be attached to a solid support. The extreme insolubility of the analogues prevented the mechanism of action for these compounds to be determined utilizing traditional methodology. The solid-supported compounds were utilized as affinity columns to identify elongation factor Tu (EF-Tu) as a putative target for this class of compounds. The activity of the compounds in a metabolic labeling experiments and in translation assay supports the identity of the target for these compounds to be EF-Tu.


Asunto(s)
Antibacterianos/química , Antibacterianos/metabolismo , Factor Tu de Elongación Peptídica/aislamiento & purificación , Factor Tu de Elongación Peptídica/metabolismo , Pirimidinas/química , Tiazoles/química , Antibacterianos/farmacología , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión/métodos , Sistemas de Liberación de Medicamentos , Unión Proteica/fisiología , Pirimidinas/metabolismo , Pirimidinas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Tiazoles/metabolismo , Tiazoles/farmacología
14.
J Biol Chem ; 278(24): 21972-9, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12690106

RESUMEN

Oxazolidinone antibiotics, an important new class of synthetic antibacterials, inhibit protein synthesis by interfering with ribosomal function. The exact site and mechanism of oxazolidinone action has not been elucidated. Although genetic data pointed to the ribosomal peptidyltransferase as the primary site of drug action, some biochemical studies conducted in vitro suggested interaction with different regions of the ribosome. These inconsistent observations obtained in vivo and in vitro have complicated the understanding of oxazolidinone action. To localize the site of oxazolidinone action in the living cell, we have cross-linked a photoactive drug analog to its target in intact, actively growing Staphylococcus aureus. The oxazolidinone cross-linked specifically to 23 S rRNA, tRNA, and two polypeptides. The site of cross-linking to 23 S rRNA was mapped to the universally conserved A-2602. Polypeptides cross-linked were the ribosomal protein L27, whose N terminus may reach the peptidyltransferase center, and LepA, a protein homologous to translation factors. Only ribosome-associated LepA, but not free protein, was cross-linked, indicating that LepA was cross-linked by the ribosome-bound antibiotic. The evidence suggests that a specific oxazolidinone binding site is formed in the translating ribosome in the immediate vicinity of the peptidyltransferase center.


Asunto(s)
Antibacterianos/farmacología , Reactivos de Enlaces Cruzados/farmacología , Oxazolidinonas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Electroforesis en Gel de Poliacrilamida , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/metabolismo , Staphylococcus aureus/metabolismo , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA