Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7904): 86-91, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388195

RESUMEN

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Asunto(s)
Aminas , Oxidorreductasas , Aminación , Aminas/química , Biocatálisis , Iminas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Estereoisomerismo
2.
Small ; : e2311016, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461530

RESUMEN

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

3.
Chembiochem ; 23(1): e202100445, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34586700

RESUMEN

Ene-reductases from the Old Yellow Enzyme (OYE) superfamily are a well-known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron-withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE-mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.


Asunto(s)
Oxidorreductasas/química , Estructura Molecular , Oxidorreductasas/metabolismo , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 61(8): e202112855, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34882925

RESUMEN

Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.


Asunto(s)
Levodopa/biosíntesis , Lignina/metabolismo , Metiltransferasas/metabolismo , Biocatálisis , Levodopa/química , Lignina/química , Metilación , Metiltransferasas/química , Estructura Molecular
5.
Org Biomol Chem ; 19(25): 5529-5533, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34105582

RESUMEN

Promiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of ß-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.


Asunto(s)
Glicosiltransferasas
6.
Nature ; 528(7583): 585-8, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26675735

RESUMEN

Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database.


Asunto(s)
Secuencias de Aminoácidos , Bioingeniería , Simulación por Computador , Estructura Secundaria de Proteína , Proteínas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Modelos Moleculares , Reproducibilidad de los Resultados
7.
Nature ; 528(7583): 580-4, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26675729

RESUMEN

A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.


Asunto(s)
Secuencias de Aminoácidos , Bioingeniería , Simulación por Computador , Conformación Proteica , Proteínas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Pliegue de Proteína , Estabilidad Proteica , Temperatura
8.
Proc Natl Acad Sci U S A ; 115(29): 7539-7544, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29959204

RESUMEN

Designed helical repeats (DHRs) are modular helix-loop-helix-loop protein structures that are tandemly repeated to form a superhelical array. Structures combining tandem DHRs demonstrate a wide range of molecular geometries, many of which are not observed in nature. Understanding cooperativity of DHR proteins provides insight into the molecular origins of Rosetta-based protein design hyperstability and facilitates comparison of energy distributions in artificial and naturally occurring protein folds. Here, we use a nearest-neighbor Ising model to quantify the intrinsic and interfacial free energies of four different DHRs. We measure the folding free energies of constructs with varying numbers of internal and terminal capping repeats for four different DHR folds, using guanidine-HCl and glycerol as destabilizing and solubilizing cosolvents. One-dimensional Ising analysis of these series reveals that, although interrepeat coupling energies are within the range seen for naturally occurring repeat proteins, the individual repeats of DHR proteins are intrinsically stable. This favorable intrinsic stability, which has not been observed for naturally occurring repeat proteins, adds to stabilizing interfaces, resulting in extraordinarily high stability. Stable repeats also impart a downhill shape to the energy landscape for DHR folding. These intrinsic stability differences suggest that part of the success of Rosetta-based design results from capturing favorable local interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencias Hélice-Asa-Hélice , Modelos Moleculares , Análisis de Secuencia de Proteína/métodos
9.
Org Biomol Chem ; 18(16): 3142-3148, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255449

RESUMEN

The human cell surface trisaccharide motifs globotriose and P1 antigen play key roles in infections by pathogenic bacteria, which makes them important synthetic targets as antibacterial agents. Enzymatic strategies to install the terminal α1,4-galactosidic linkage are very attractive but have only been demonstrated for a limited set of analogues. Herein, a new bacterial α1,4 galactosyltransferase from N. weaveri was cloned and produced recombinantly in E. coli BL21 (DE3) cells, followed by investigation of its substrate specificity. We demonstrate that the enzyme can tolerate galactosamine (GalN) and also 6-deoxygalactose and 6-deoxy-6-fluorogalactose as donors, and lactose and N-acetyllactosamine as acceptors, leading directly to analogues of Gb3 and P1 that are valuable chemical probes and showcase how biocatalysis can provide fast access to a number of unnatural carbohydrate analogues.


Asunto(s)
Galactósidos/síntesis química , Galactosiltransferasas/metabolismo , Neisseria/enzimología , Amino Azúcares/metabolismo , Proteínas Bacterianas , Biocatálisis , Clonación Molecular , Escherichia coli/genética , Galactosamina/metabolismo , Galactósidos/biosíntesis , Galactosiltransferasas/aislamiento & purificación , Globósidos/química , Humanos , Lactosa/metabolismo , Especificidad por Sustrato , Trisacáridos/química
10.
Chem Rev ; 118(1): 73-118, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28497955

RESUMEN

Ammonia-lyases and aminomutases are mechanistically and structurally diverse enzymes which catalyze the deamination and/or isomerization of amino acids in nature by cleaving or shifting a C-N bond. Of the many protein families in which these enzyme activities are found, only a subset have been employed in the synthesis of optically pure fine chemicals or in medical applications. This review covers the natural diversity of these enzymes, highlighting particular enzyme classes that are used within industrial and medical biotechnology. These highlights detail the discovery and mechanistic investigations of these commercially relevant enzymes, along with comparisons of their various applications as stand-alone catalysts, components of artificial biosynthetic pathways and biocatalytic or chemoenzymatic cascades, and therapeutic tools for the potential treatment of various pathologies.


Asunto(s)
Amoníaco-Liasas/metabolismo , Transaminasas/metabolismo , Amoníaco-Liasas/clasificación , Amoníaco-Liasas/uso terapéutico , Bacterias/enzimología , Biocatálisis , Humanos , Transferasas Intramoleculares/clasificación , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/uso terapéutico , Modelos Moleculares , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/clasificación , Fenilanina Amoníaco-Liasa/metabolismo , Especificidad por Sustrato , Transaminasas/clasificación , Transaminasas/uso terapéutico
11.
Angew Chem Int Ed Engl ; 59(41): 18156-18160, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32628797

RESUMEN

The combination of biocatalysis and chemo-catalysis increasingly offers chemists access to more diverse chemical architectures. Here, we describe the combination of a toolbox of chiral-amine-producing biocatalysts with a Buchwald-Hartwig cross-coupling reaction, affording a variety of α-chiral aniline derivatives. The use of a surfactant allowed reactions to be performed sequentially in the same flask, preventing the palladium catalyst from being inhibited by the high concentrations of ammonia, salts, or buffers present in the aqueous media in most cases. The methodology was further extended by combining with a dual-enzyme biocatalytic hydrogen-borrowing cascade in one pot to allow for the conversion of a racemic alcohol to a chiral aniline.


Asunto(s)
Aminas/síntesis química , Aminación , Aminas/química , Biocatálisis , Paladio/química , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 59(50): 22456-22459, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32857448

RESUMEN

Automated chemical oligosaccharide synthesis is an attractive concept that has been successfully applied to a large number of target structures, but requires excess quantities of suitably protected and activated building blocks. Herein we demonstrate the use of biocatalysis to supply such reagents for automated synthesis. By using the promiscuous NmLgtB-B ß1-4 galactosyltransferase from Neisseria meningitidis we demonstrate fast and robust access to the LacNAc motif, common to many cell-surface glycans, starting from either lactose or sucrose as glycosyl donors. The enzymatic product was shown to be successfully incorporated as a complete unit into a tetrasaccharide target by automated assembly.


Asunto(s)
Automatización , Galactosiltransferasas/metabolismo , Neisseria meningitidis/enzimología , Polisacáridos/biosíntesis , Conformación de Carbohidratos , Polisacáridos/química
13.
Angew Chem Int Ed Engl ; 59(13): 5308-5311, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31834658

RESUMEN

Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N-acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5-modified sialosides, through the use of highly selective enzyme cascades.


Asunto(s)
Amidohidrolasas/metabolismo , Quitina/química , Glucosamina/química , Glicósidos/síntesis química , Azúcares Ácidos/síntesis química , Acilación , Amidas/química , Biocatálisis , Ácidos Carboxílicos/química , Conformación Molecular , Estereoisomerismo , Azúcares Ácidos/química
14.
J Am Chem Soc ; 141(49): 19208-19213, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31743008

RESUMEN

Ene-reductases (EREDs) catalyze the reduction of electron-deficient C═C bonds. Herein, we report the first example of ERED-catalyzed net reduction of C═C bonds of enimines (α,ß-unsaturated imines). Preliminary studies suggest their hydrolyzed ring-open ω-amino enones are the likely substrates for this step. When combined with imine reductase (IRED)-mediated C═N reduction, the result is an efficient telescoped sequence for the preparation of diastereomerically enriched 2-substituted saturated amine heterocycles.


Asunto(s)
Biocatálisis , Compuestos Heterocíclicos/síntesis química , Iminas/química , Oxidorreductasas/química , Compuestos Heterocíclicos/química , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
15.
Org Biomol Chem ; 17(24): 5920-5924, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31165848

RESUMEN

Utilising a fast and sensitive screening method based on imidazolium-tagged probes, we report unprecedented reversible activity of bacterial ß1,4-galactosyltransferases to catalyse the transgalactosylation from lactose to N-acetylglucosamine to form N-acetyllactosamine in the presence of UDP. The process is demonstrated by the preparative scale synthesis of pNP-ß-LacNAc from lactose using ß1,4-galactosyltransferase NmLgtB-B as the only biocatalyst.


Asunto(s)
Amino Azúcares/biosíntesis , Galactosiltransferasas/metabolismo , Lactosa/metabolismo , Amino Azúcares/química , Biocatálisis , Galactosiltransferasas/química , Lactosa/química , Estructura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(52): 15012-15017, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27940918

RESUMEN

Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)3]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.


Asunto(s)
Metaloproteínas/química , Ingeniería de Proteínas/métodos , Piridinas/química , Aminoácidos/química , Clonación Molecular , Biología Computacional/métodos , Simulación por Computador , Cristalografía por Rayos X , Metales/química , Modelos Moleculares , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Programas Informáticos
17.
J Struct Biol ; 201(2): 100-107, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28890160

RESUMEN

Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials.


Asunto(s)
Algoritmos , Ingeniería de Proteínas/métodos , Proteínas/química , Diseño Asistido por Computadora , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Secuencias Repetitivas de Aminoácido , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Small ; 14(10)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29359400

RESUMEN

Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.

19.
Chembiochem ; 19(4): 388-394, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29193544

RESUMEN

Glycosyl phosphates are important intermediates in many metabolic pathways and are substrates for diverse carbohydrate-active enzymes. Thus, there is a need to develop libraries of structurally similar analogues that can be used as selective chemical probes in glycomics. Here, we explore chemoenzymatic cascades for the fast generation of glycosyl phosphate libraries without protecting-group strategies. The key enzyme is a new bacterial galactokinase (LgGalK) cloned from Leminorella grimontii, which was produced in Escherichia coli and shown to catalyse 1-phosphorylation of galactose. LgGalK displayed a broad substrate tolerance, being able to catalyse the 1-phosphorylation of a number of galactose analogues, including 3-deoxy-3-fluorogalactose and 4-deoxy-4-fluorogalactose, which were first reported to be substrates for wild-type galactokinase. LgGalK and galactose oxidase variant M1 were combined in a one-pot, two-step system to synthesise 6-oxogalactose-1-phosphate and 6-oxo-2-fluorogalactose-1-phosphate, which were subsequently used to produce a panel of 30 substituted 6-aminogalactose-1-phosphate derivatives by chemical reductive amination in a one-pot, three-step chemoenzymatic process.


Asunto(s)
Amino Azúcares/biosíntesis , Enterobacteriaceae/enzimología , Galactoquinasa/metabolismo , Amino Azúcares/química , Galactoquinasa/química , Galactoquinasa/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Especificidad por Sustrato , Temperatura
20.
Nat Chem Biol ; 12(1): 29-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595462

RESUMEN

Despite efforts for over 25 years, de novo protein design has not succeeded in achieving the TIM-barrel fold. Here we describe the computational design of four-fold symmetrical (ß/α)8 barrels guided by geometrical and chemical principles. Experimental characterization of 33 designs revealed the importance of side chain-backbone hydrogen bonds for defining the strand register between repeat units. The X-ray crystal structure of a designed thermostable 184-residue protein is nearly identical to that of the designed TIM-barrel model. PSI-BLAST searches do not identify sequence similarities to known TIM-barrel proteins, and sensitive profile-profile searches indicate that the design sequence is distant from other naturally occurring TIM-barrel superfamilies, suggesting that Nature has sampled only a subset of the sequence space available to the TIM-barrel fold. The ability to design TIM barrels de novo opens new possibilities for custom-made enzymes.


Asunto(s)
Modelos Moleculares , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Proteínas/química , Dicroismo Circular , Cristalografía por Rayos X , Enlace de Hidrógeno , Conformación Proteica , Proteínas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA