Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
3.
Hepatology ; 72(4): 1310-1326, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090557

RESUMEN

BACKGROUND AND AIMS: T cells from patients with primary sclerosing cholangitis (PSC) show a prominent interleukin (IL)-17 response upon stimulation with bacteria or fungi, yet the reasons for this dominant T-helper 17 (Th17) response in PSC are not clear. Here, we analyzed the potential role of monocytes in microbial recognition and in skewing the T-cell response toward Th17. APPROACH AND RESULTS: Monocytes and T cells from blood and livers of PSC patients and controls were analyzed ex vivo and in vitro using transwell experiments with cholangiocytes. Cytokine production was measured using flow cytometry, enzyme-linked immunosorbent assay, RNA in situ hybridization, and quantitative real-time PCR. Genetic polymorphisms were obtained from ImmunoChip analysis. Following ex vivo stimulation with phorbol myristate acetate/ionomycin, PSC patients showed significantly increased numbers of IL-17A-producing peripheral blood CD4+ T cells compared to PBC patients and healthy controls, indicating increased Th17 differentiation in vivo. Upon stimulation with microbes, monocytes from PSC patients produced significantly more IL-1ß and IL-6, cytokines known to drive Th17 cell differentiation. Moreover, microbe-activated monocytes induced the secretion of Th17 and monocyte-recruiting chemokines chemokine (C-C motif) ligand (CCL)-20 and CCL-2 in human primary cholangiocytes. In livers of patients with PSC cirrhosis, CD14hiCD16int and CD14loCD16hi monocytes/macrophages were increased compared to alcoholic cirrhosis, and monocytes were found to be located around bile ducts. CONCLUSIONS: PSC patients show increased Th17 differentiation already in vivo. Microbe-stimulated monocytes drive Th17 differentiation in vitro and induce cholangiocytes to produce chemokines mediating recruitment of Th17 cells and more monocytes into portal tracts. Taken together, these results point to a pathogenic role of monocytes in patients with PSC.


Asunto(s)
Colangitis Esclerosante/inmunología , Monocitos/fisiología , Células Th17/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Adaptadoras de Señalización CARD/genética , Diferenciación Celular , Quimiocinas/biosíntesis , Femenino , Humanos , Interleucina-1beta/fisiología , Interleucinas/genética , Cirrosis Hepática/inmunología , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Nature ; 517(7534): 386-90, 2015 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-25363763

RESUMEN

T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Tolerancia Inmunológica/inmunología , Proteínas de la Membrana/metabolismo , Receptores Virales/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos CD/química , Antígenos CD/inmunología , Autoinmunidad/inmunología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/inmunología , Línea Celular , Neoplasias Colorrectales/inmunología , Modelos Animales de Enfermedad , Femenino , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inflamación/inmunología , Inflamación/patología , Ligandos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Moleculares , Membrana Mucosa/inmunología , Membrana Mucosa/patología , Conformación Proteica , Multimerización de Proteína , Receptores Virales/química , Receptores Virales/inmunología
5.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795570

RESUMEN

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Asunto(s)
Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Judíos/genética , Enfermedades Raras/genética , Algoritmos , Enfermedad de Crohn/epidemiología , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Modelos Genéticos , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Enfermedades Raras/epidemiología
6.
J Autoimmun ; 96: 104-112, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219389

RESUMEN

IL-17A has been identified as key regulatory molecule in several autoimmune and chronic inflammatory diseases followed by the successful use of anti-IL-17 therapy, e.g. in ankylosing spondylitis and psoriasis. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease with a high need for more specific, effective and safe treatment options. The aim of this study was to clarify the pathophysiological importance of IL-17A in BP. We found elevated numbers of IL-17A+ CD4+ lymphocytes in the peripheral blood of BP patients and identified CD3+ cells as major source of IL-17A in early BP skin lesions. IL17A and related genes were upregulated in BP skin and exome sequencing of 51 BP patients revealed mutations in twelve IL-17-related genes in 18 patients. We have subsequently found several lines of evidence suggesting a significant role of IL-17A in the BP pathogenesis: (i) IL-17A activated human neutrophils in vitro, (ii) inhibition of dermal-epidermal separation in cryosections of human skin incubated with anti-BP180 IgG and subsequently with anti-IL-17A IgG-treated leukocytes, (iii) close correlation of serum IL-17A levels and diseases activity in a mouse model of BP, (iv) IL17A-deficient mice were protected against autoantibody-induced BP, and (v) pharmacological inhibition of lL-17A reduced the induction of BP in mice. Our data give evidence for a pivotal role of IL-17A in the pathophysiology of BP and advocate IL-17A inhibition as potential novel treatment for this disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-17/metabolismo , Neutrófilos/inmunología , Penfigoide Ampolloso/inmunología , Piel/metabolismo , Animales , Autoanticuerpos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Interleucina-17/genética , Ratones , Ratones Noqueados , Mutación/genética , Activación Neutrófila , Piel/patología , Secuenciación del Exoma
7.
Hum Genet ; 137(9): 705-716, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30054724

RESUMEN

Genome-wide and candidate gene studies for pulmonary sarcoidosis have highlighted several candidate variants among different populations. However, the genetic basis of functional rare variants in sarcoidosis still needs to be explored. To identify functional rare variants in sarcoidosis, we sequenced exomes of 22 sarcoidosis cases from six families. Variants were prioritized using linkage and high-penetrance approaches, and filtered to identify novel and rare variants. Functional networking and pathway analysis of identified variants was performed using gene ontology based gene-phenotype, gene-gene, and protein-protein interactions. The linkage (n = 1007-7640) and high-penetrance (n = 11,432) prioritized variants were filtered to select variants with (a) reported allele frequency < 5% in databases (1.2-3.4%) or (b) novel (0.7-2.3%). Further selection based on functional properties and validation revealed a panel of 40 functional rare variants (33 from linkage region, 6 highly penetrant and 1 shared by both approaches). Functional network analysis implicated these gene variants in immune responses, such as regulation of pro-inflammatory cytokines including production of IFN-γ and anti-inflammatory cytokine IL-10, leukocyte proliferation, bacterial defence, and vesicle-mediated transport. The KEGG pathway analysis indicated inflammatory bowel disease as most relevant. This study highlights the subsets of functional rare gene variants involved in pulmonary sarcoidosis, such as, regulations of calcium ions, G-protein-coupled receptor, and immune system including retinoic acid binding. The implicated mechanisms in etiopathogenesis of familial sarcoidosis thus include Wnt signalling, inflammation mediated by chemokine and cytokine signalling and cadherin signalling pathways.


Asunto(s)
Exoma , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Variación Genética , Sarcoidosis Pulmonar/genética , Análisis de Secuencia de ADN/métodos , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Sarcoidosis Pulmonar/patología
8.
Hum Mutat ; 38(9): 1182-1192, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28634997

RESUMEN

Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.


Asunto(s)
Trastorno Bipolar/genética , Enfermedad de Crohn/genética , Secuenciación del Exoma/métodos , Medicina de Precisión/métodos , Warfarina/uso terapéutico , Biología Computacional/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información , Variantes Farmacogenómicas , Fenotipo , Warfarina/farmacología
9.
Hum Mol Genet ; 24(21): 6254-63, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26310624

RESUMEN

Liver disease due to alpha-1-antitrypsin deficiency (A1ATD) is associated with hepatic iron overload in a subgroup of patients. The underlying cause for this association is unknown. The aim of the present study was to define the genetics of this correlation and the effect of alpha-1-antitrypsin (A1AT) on the expression of the iron hormone hepcidin. Full exome and candidate gene sequencing were carried out in a family with A1ATD and hepatic iron overload. Regulation of hepcidin expression by A1AT was studied in primary murine hepatocytes. Cells co-transfected with hemojuvelin (HJV) and matriptase-2 (MT-2) were used as a model to investigate the molecular mechanism of this regulation. Observed familial clustering of hepatic iron overload with A1ATD suggests a genetic cause, but genotypes known to be associated with hemochromatosis were absent. Individuals homozygous for the A1AT Z-allele with environmental or genetic risk factors such as steatosis or heterozygosity for the HAMP non-sense mutation p.Arg59* presented with severe hepatic siderosis. In hepatocytes, A1AT induced hepcidin mRNA expression in a dose-dependent manner. Experiments in overexpressing cells show that A1AT reduces cleavage of the hepcidin inducing bone morphogenetic protein co-receptor HJV via inhibition of the membrane-bound serine protease MT-2. The acute-phase protein A1AT is an inducer of hepcidin expression. Through this mechanism, A1ATD could be a trigger of hepatic iron overload in genetically predisposed individuals or patients with environmental risk factors for hepatic siderosis.


Asunto(s)
Hepcidinas/biosíntesis , Sobrecarga de Hierro/genética , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Progresión de la Enfermedad , Femenino , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Hemocromatosis/genética , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis , Hepatocitos/metabolismo , Humanos , Sobrecarga de Hierro/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Serina Endopeptidasas/metabolismo , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo
10.
Hum Mol Genet ; 24(23): 6614-23, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26358773

RESUMEN

Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients.


Asunto(s)
Anomalías Múltiples/genética , Diarrea/congénito , Errores Innatos del Metabolismo/genética , Mutación , Intercambiadores de Sodio-Hidrógeno/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Diarrea/genética , Diarrea/metabolismo , Diarrea/fisiopatología , Femenino , Genes Recesivos , Humanos , Lactante , Recién Nacido , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Masculino , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/fisiopatología , Microvellosidades/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Intercambiador 3 de Sodio-Hidrógeno , Adulto Joven
11.
BMC Genet ; 18(1): 14, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28193154

RESUMEN

Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.


Asunto(s)
Exoma/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Enfermedad/genética , Humanos
13.
Gut ; 65(8): 1306-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-25994218

RESUMEN

OBJECTIVE: Congenital sodium diarrhoea (CSD) refers to a form of secretory diarrhoea with intrauterine onset and high faecal losses of sodium without congenital malformations. The molecular basis for CSD remains unknown. We clinically characterised a cohort of infants with CSD and set out to identify disease-causing mutations by genome-wide genetic testing. DESIGN: We performed whole-exome sequencing and chromosomal microarray analyses in 4 unrelated patients, followed by confirmatory Sanger sequencing of the likely disease-causing mutations in patients and in their family members, followed by functional studies. RESULTS: We identified novel de novo missense mutations in GUCY2C, the gene encoding receptor guanylate cyclase C (GC-C) in 4 patients with CSD. One patient developed severe, early-onset IBD and chronic arthritis at 4 years of age. GC-C is an intestinal brush border membrane-bound guanylate cyclase, which functions as receptor for guanylin, uroguanylin and Escherichia coli heat-stable enterotoxin. Mutations in GUCY2C were present in different intracellular domains of GC-C, and were activating mutations that enhanced intracellular cyclic guanosine monophosphate accumulation in a ligand-independent and ligand-stimulated manner, following heterologous expression in HEK293T cells. CONCLUSIONS: Dominant gain-of-function GUCY2C mutations lead to elevated intracellular cyclic guanosine monophosphate levels and could explain the chronic diarrhoea as a result of decreased intestinal sodium and water absorption and increased chloride secretion. Thus, mutations in GUCY2C indicate a role for this receptor in the pathogenesis of sporadic CSD.


Asunto(s)
Anomalías Múltiples , Diarrea/congénito , Mucosa Intestinal , Intestinos , Errores Innatos del Metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/genética , Receptores de Péptidos/genética , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Diarrea/genética , Diarrea/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Guanosina Monofosfato/metabolismo , Humanos , Lactante , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Masculino , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/fisiopatología , Mutación Missense , Receptores de Enterotoxina , Sodio/metabolismo
14.
Gastroenterology ; 149(6): 1415-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26193622

RESUMEN

BACKGROUND & AIMS: Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. METHODS: Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. RESULTS: Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. CONCLUSIONS: In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants.


Asunto(s)
Envejecimiento/genética , Exoma , Síndromes de Inmunodeficiencia/genética , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Mutación , Adolescente , Adulto , Antígenos CD19/genética , Proteínas de Ciclo Celular/genética , Niño , Preescolar , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Alemania , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Subunidad alfa del Receptor de Interleucina-10/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN
15.
Immunol Cell Biol ; 94(10): 943-948, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27562064

RESUMEN

The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and 'horror autotoxicus'. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity.


Asunto(s)
Autoinmunidad , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Variación Genética , Humanos , Tolerancia Inmunológica/genética , Fenotipo
17.
Gut ; 64(12): 1889-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25367873

RESUMEN

OBJECTIVE: IBD is a group of complex, systemic disorders associated with intestinal inflammation and extraintestinal manifestations. Recent studies revealed Mendelian forms of IBD, which contributed significantly to our understanding of disease pathogenesis and the heritability of IBD. DESIGN: We performed exome sequencing in a family with Crohn's disease (CD) and severe autoimmunity, analysed immune cell phenotype and function in affected and non-affected individuals, and performed in silico and in vitro analyses of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) structure and function. RESULTS: A novel missense variant was identified in CTLA4 encoding CTLA-4, a coinhibitory protein expressed by T cells and required for regulation of T cell activation. The residue affected by the mutation, CTLA-4 Tyr60, is evolutionarily highly conserved, and the identified Y60C variant is predicted to affect protein folding and structural stability and demonstrated to cause impaired CTLA-4 dimerisation and CD80 binding. Intestinal inflammation and autoimmunity in carriers of CTLA-4 Y60C exhibit incomplete penetrance with a spectrum of clinical presentations ranging from asymptomatic carrier status to fatal autoimmunity and intestinal inflammation. In a clinically affected CTLA-4 Y60C carrier, T cell proliferation was increased in vitro and associated with an increased ratio of memory to naive T cells in vivo, consistent with impaired regulation of T cell activation. CONCLUSIONS: Our results support the concept that variants in CTLA4 provide the basis for a novel Mendelian form of early-onset CD associated with systemic autoimmunity. Incomplete penetrance of autoimmunity further indicates the presence of other genetic and/or environmental modifiers.


Asunto(s)
Enfermedades Autoinmunes/genética , Autoinmunidad/genética , Antígeno CTLA-4/genética , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Linfocitos T Citotóxicos/metabolismo , Adolescente , Edad de Inicio , Enfermedades Autoinmunes/inmunología , Antígeno B7-1/metabolismo , Recuento de Linfocito CD4 , Antígeno CTLA-4/metabolismo , Proliferación Celular/genética , Niño , Análisis Mutacional de ADN , Diabetes Mellitus Tipo 1/complicaciones , Dimerización , Exoma , Femenino , Células HEK293 , Heterocigoto , Humanos , Memoria Inmunológica/genética , Mutación Missense , Linaje , Penetrancia , Multimerización de Proteína/genética , Análisis de Secuencia de ADN , Adulto Joven
18.
Gut ; 64(1): 66-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24572142

RESUMEN

OBJECTIVE: The genetic basis of inflammatory bowel disease (IBD) is incompletely understood. The aim of this study was to identify rare genetic variants involved in the pathogenesis of IBD. DESIGN: Exome sequencing and immunological profiling were performed in a patient with early onset Crohn's disease (CD). The coding region of the gene encoding X-linked inhibitor of apoptosis protein (XIAP) was sequenced in samples of 275 paediatric IBD and 1047 adult-onset CD patients. XIAP genotyping was performed in samples of 2680 IBD patients and 2864 healthy controls. Functional effects of the variants identified were investigated in primary cells and cultured cell lines. RESULTS: Our results demonstrate the frequent occurrence of private variants in XIAP in about four percent of male patients with paediatric-onset CD. While XIAP mutations are known to be associated with the primary immunodeficiency (PID) X-linked lymphoproliferative disease type 2 (XLP2), CD patients described here exhibited intestinal inflammation in the absence of XLP2 and harboured a spectrum of mutations partially distinct from that observed in XLP2. The majority of XIAP variants identified was associated with a selective defect in NOD1/2 signalling, impaired NOD1/2-mediated activation of NF-κB, and altered NF-κB-dependent cytokine production. CONCLUSIONS: This study reveals the unanticipated, frequent occurrence of XIAP variants in male paediatric-onset CD. The link between XIAP and NOD1/2, and the association of XIAP variants with XLP2, support the concept of PID in a subset of IBD patients. Moreover, these studies provide a rationale for the implementation of XIAP sequencing in clinical diagnostics in male patients with severe CD.


Asunto(s)
Enfermedad de Crohn/genética , Mutación , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Adolescente , Humanos , Lactante , Masculino
19.
Scand J Gastroenterol ; 50(1): 13-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25523552

RESUMEN

The two major subtypes of inflammatory bowel disease (IBD), ulcerative colitis (UC, MIM#191390) and Crohn's disease (CD, MIM#266600), are chronic relapsing-remitting inflammatory disorders affecting primarily the gastrointestinal tract. Prevalence rates in North America and Europe range from 21 to 246 per 100,000 for UC and 8 to 214 per 100,000 for CD. Although CD and UC share some clinical and pathological features, they can be distinguished by localization, endoscopic appearance, histology and behavior, which suggest differences in the underlying pathophysiology. The importance of genetic risk factors in disease etiology is high and has been documented more clearly for CD than for UC (relative sibling risks λ(s): 15-35 for CD, 6-9 for UC). The most recent and largest genetic association study for IBD, which employed genome-wide association data for over 75,000 patients and controls, established the association of 163 susceptibility loci with IBD. Although the disease variance explained by the 163 loci only amounts to 13.6% for CD and 7.5% for UC, the identified loci and the candidate genes within yielded valuable insights into the pathogenesis of IBD and the relevant disease pathways. We here review the current research on the genetics of IBD and provide insights into on current efforts as well as suggest topics for future research.


Asunto(s)
Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Antígenos HLA/genética , Humanos
20.
Nucleic Acids Res ; 41(1): e16, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22965131

RESUMEN

Scientists working with single-nucleotide variants (SNVs), inferred by next-generation sequencing software, often need further information regarding true variants, artifacts and sequence coverage gaps. In clinical diagnostics, e.g. SNVs must usually be validated by visual inspection or several independent SNV-callers. We here demonstrate that 0.5-60% of relevant SNVs might not be detected due to coverage gaps, or might be misidentified. Even low error rates can overwhelm the true biological signal, especially in clinical diagnostics, in research comparing healthy with affected cells, in archaeogenetic dating or in forensics. For these reasons, we have developed a package called pibase, which is applicable to diploid and haploid genome, exome or targeted enrichment data. pibase extracts details on nucleotides from alignment files at user-specified coordinates and identifies reproducible genotypes, if present. In test cases pibase identifies genotypes at 99.98% specificity, 10-fold better than other tools. pibase also provides pair-wise comparisons between healthy and affected cells using nucleotide signals (10-fold more accurately than a genotype-based approach, as we show in our case study of monozygotic twins). This comparison tool also solves the problem of detecting allelic imbalance within heterozygous SNVs in copy number variation loci, or in heterogeneous tumor sequences.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Alineación de Secuencia , Análisis de Secuencia de ADN , Programas Informáticos , Genómica , Humanos , Filogenia , Reproducibilidad de los Resultados , Gemelos Monocigóticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA