Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 151(2): 372-83, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063126

RESUMEN

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Asunto(s)
Canales de Calcio/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Línea Celular , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , NADP/análogos & derivados , NADP/metabolismo , Canales de Sodio/metabolismo
2.
Cell ; 141(2): 331-43, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403327

RESUMEN

A plethora of growth factors regulate keratinocyte proliferation and differentiation that control hair morphogenesis and skin barrier formation. Wavy hair phenotypes in mice result from naturally occurring loss-of-function mutations in the genes for TGF-alpha and EGFR. Conversely, excessive activities of TGF-alpha/EGFR result in hairless phenotypes and skin cancers. Unexpectedly, we found that mice lacking the Trpv3 gene also exhibit wavy hair coat and curly whiskers. Here we show that keratinocyte TRPV3, a member of the transient receptor potential (TRP) family of Ca(2+)-permeant channels, forms a signaling complex with TGF-alpha/EGFR. Activation of EGFR leads to increased TRPV3 channel activity, which in turn stimulates TGF-alpha release. TRPV3 is also required for the formation of the skin barrier by regulating the activities of transglutaminases, a family of Ca(2+)-dependent crosslinking enzymes essential for keratinocyte cornification. Our results show that a TRP channel plays a role in regulating growth factor signaling by direct complex formation.


Asunto(s)
Receptores ErbB/metabolismo , Cabello/crecimiento & desarrollo , Transducción de Señal , Piel/crecimiento & desarrollo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Cabello/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Noqueados , Piel/metabolismo , Canales Catiónicos TRPV/genética , Factor de Crecimiento Transformador alfa/metabolismo
3.
Hum Mol Genet ; 21(14): 3205-14, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22505584

RESUMEN

Niemann-Pick type C disease is a lysosomal storage disorder most often caused by loss-of-function mutations in the NPC1 gene. The encoded multipass transmembrane protein is required for cholesterol efflux from late endosomes and lysosomes. Numerous missense mutations in the NPC1 gene cause disease, including the prevalent I1061T mutation that leads to protein misfolding and degradation. Here, we sought to modulate the cellular proteostasis machinery to achieve functional recovery in primary patient fibroblasts. We demonstrate that targeting endoplasmic reticulum (ER) calcium levels using ryanodine receptor (RyR) antagonists increased steady-state levels of the NPC1 I1061T protein. These compounds also promoted trafficking of mutant NPC1 to late endosomes and lysosomes and rescued the aberrant storage of cholesterol and sphingolipids that is characteristic of disease. Similar rescue was obtained using three distinct RyR antagonists in cells with missense alleles, but not with null alleles, or by over-expressing calnexin, a calcium-dependent ER chaperone. Our work highlights the utility of proteostasis regulators to remodel the protein-folding environment in the ER to recover function in the setting of disease-causing missense alleles.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Proteínas Portadoras/metabolismo , Fibroblastos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Mutación Missense , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteoma/genética , Proteoma/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética
4.
Bioessays ; 33(6): 448-57, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21538413

RESUMEN

The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Endosomas/metabolismo , Lisosomas/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Autofagia , Membrana Celular/metabolismo , Humanos , Fusión de Membrana , Transporte de Proteínas , Transducción de Señal
5.
J Biol Chem ; 284(46): 32040-52, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19638346

RESUMEN

The mucolipin TRP (TRPML) proteins are a family of endolysosomal cation channels with genetically established importance in humans and rodent. Mutations of human TRPML1 cause type IV mucolipidosis, a devastating pediatric neurodegenerative disease. Our recent electrophysiological studies revealed that, although a TRPML1-mediated current can only be recorded in late endosome and lysosome (LEL) using the lysosome patch clamp technique, a proline substitution in TRPML1 (TRPML1(V432P)) results in a large whole cell current. Thus, it remains unknown whether the large TRPML1(V432P)-mediated current results from an increased surface expression (trafficking), elevated channel activity (gating), or both. Here we performed systemic Pro substitutions in a region previously implicated in the gating of various 6 transmembrane cation channels. We found that several Pro substitutions displayed gain-of-function (GOF) constitutive activities at both the plasma membrane (PM) and endolysosomal membranes. Although wild-type TRPML1 and non-GOF Pro substitutions localized exclusively in LEL and were barely detectable in the PM, the GOF mutations with high constitutive activities were not restricted to LEL compartments, and most significantly, exhibited significant surface expression. Because lysosomal exocytosis is Ca(2+)-dependent, constitutive Ca(2+) permeability due to Pro substitutions may have resulted in stimulus-independent intralysosomal Ca(2+) release, hence the surface expression and whole cell current of TRPML1. Indeed, surface staining of lysosome-associated membrane protein-1 (Lamp-1) was dramatically increased in cells expressing GOF TRPML1 channels. We conclude that TRPML1 is an inwardly rectifying, proton-impermeable, Ca(2+) and Fe(2+)/Mn(2+) dually permeable cation channel that may be gated by unidentified cellular mechanisms through a conformational change in the cytoplasmic face of the transmembrane 5 (TM5). Furthermore, activation of TRPML1 in LEL may lead to the appearance of TRPML1 proteins at the PM.


Asunto(s)
Mutación/genética , Prolina/química , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Calcio/metabolismo , Células Cultivadas , Electrofisiología , Exocitosis , Humanos , Riñón/citología , Riñón/metabolismo , Lisosomas , Manganeso/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Prolina/genética , Homología de Secuencia de Aminoácido , Canales de Potencial de Receptor Transitorio
6.
Nat Commun ; 3: 731, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22415822

RESUMEN

Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.


Asunto(s)
Calcio/metabolismo , Lisosomas/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Técnicas de Placa-Clamp , Ftalimidas/farmacología , Transporte de Proteínas , Quinolinas/farmacología , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Canales Catiónicos TRPC/antagonistas & inhibidores
7.
FEBS Lett ; 584(10): 2013-21, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20074572

RESUMEN

The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.


Asunto(s)
Espacio Intracelular/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Homeostasis , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Transporte de Proteínas , Transducción de Señal
8.
Nat Commun ; 1: 38, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20802798

RESUMEN

Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.


Asunto(s)
Membrana Celular/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Transporte Biológico , Electrofisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana , Ratones , Unión Proteica , Canales de Potencial de Receptor Transitorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA