Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(5): e2213626120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689648

RESUMEN

Plasmodium falciparum malaria originated when Plasmodium praefalciparum, a gorilla malaria parasite transmitted by African sylvan anopheline mosquitoes, adapted to humans. Pfs47, a protein on the parasite surface mediates P. falciparum evasion of the mosquito immune system by interacting with a midgut receptor and is critical for Plasmodium adaptation to different anopheline species. Genetic analysis of 4,971 Pfs47 gene sequences from different continents revealed that Asia and Papua New Guinea harbor Pfs47 haplotypes more similar to its ortholog in P. praefalciparum at sites that determine vector compatibility, suggesting that ancestral P. falciparum readily adapted to Asian vectors. Consistent with this observation, Pfs47-receptor gene sequences from African sylvan malaria vectors, such as Anopheles moucheti and An. marshallii, were found to share greater similarity with those of Asian vectors than those of vectors of the African An. gambiae complex. Furthermore, experimental infections provide direct evidence that transformed P. falciparum parasites carrying Pfs47 orthologs of P. praefalciparum or P. reichenowi were more effective at evading the immune system of the Asian malaria vector An. dirus than An. gambiae. We propose that high compatibility of ancestral P. falciparum Pfs47 with the receptors of Asian vectors facilitated the early dispersal of human malaria to the Asian continent, without having to first adapt to sub-Saharan vectors of the An. gambiae complex.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Plasmodium , Animales , Humanos , Plasmodium falciparum/genética , Anopheles/genética , Mosquitos Vectores/parasitología , Malaria Falciparum/parasitología , Gorilla gorilla
2.
PLoS Pathog ; 19(6): e1011468, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384799

RESUMEN

Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Culicidae/genética , Expresión Génica , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Esporozoítos , Virulencia/genética
3.
Nucleic Acids Res ; 50(5): 2905-2922, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35212377

RESUMEN

CMTR1 (cap methyltransferase 1) catalyses methylation of the first transcribed nucleotide of RNAPII transcripts (N1 2'-O-Me), creating part of the mammalian RNA cap structure. In addition to marking RNA as self, N1 2'-O-Me has ill-defined roles in RNA expression and translation. Here, we investigated the gene specificity of CMTR1 and its impact on RNA expression in embryonic stem cells. Using chromatin immunoprecipitation, CMTR1 was found to bind to transcription start sites (TSS) correlating with RNAPII levels, predominantly binding at histone genes and ribosomal protein (RP) genes. Repression of CMTR1 expression resulted in repression of RNAPII binding at the TSS and repression of RNA expression, particularly of histone and RP genes. In correlation with regulation of histones and RP genes, CMTR1 repression resulted in repression of translation and induction of DNA replication stress and damage. Indicating a direct role for CMTR1 in transcription, addition of recombinant CMTR1 to purified nuclei increased transcription of the histone and RP genes. CMTR1 was found to be upregulated during neural differentiation and there was an enhanced requirement for CMTR1 for gene expression and proliferation during this process. We highlight the distinct roles of the cap methyltransferases RNMT and CMTR1 in target gene expression and differentiation.


Asunto(s)
Células Madre Embrionarias , Histonas , Metiltransferasas , Proteínas Ribosómicas , Animales , Células Madre Embrionarias/metabolismo , Expresión Génica , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Caperuzas de ARN/genética , ARN Polimerasa II/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
4.
PLoS Genet ; 17(5): e1009576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34033654

RESUMEN

Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.


Asunto(s)
Alelos , Genoma/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Adolescente , Adulto , Envejecimiento/inmunología , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Malaui , Adulto Joven
5.
J Mol Evol ; 91(6): 897-911, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017120

RESUMEN

Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.


Asunto(s)
Parásitos , Theileria parva , Theileria , Animales , Theileria/genética , Parásitos/genética , Theileria parva/genética , Familia de Multigenes/genética , Cromosomas
6.
Malar J ; 22(1): 383, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115002

RESUMEN

BACKGROUND: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR = 1-hazard ratio or VERR = 1-risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. METHODS: Power of VEmolFOI and VEC was compared to that of VEHR and VERR by simulations and analytic derivations, and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. RESULTS: In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like those from RTS,S, but VEC is less powerful than VEHR for trials in which the number of clones at first infection is not reduced. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. CONCLUSIONS: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints for small trials unless supported by targeted data analysis. TRIAL REGISTRATIONS: NCT00866619, NCT02663700, NCT02143934.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Lactante , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Genotipo , Malaria/tratamiento farmacológico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/epidemiología , Primaquina/uso terapéutico , Ensayos Clínicos como Asunto
7.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34507950

RESUMEN

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Vacunas Antiprotozoos/inmunología , Theileria parva/fisiología , Theileriosis/inmunología , Animales , Presentación de Antígeno , Antígenos de Protozoos/inmunología , Bovinos , Células Cultivadas , Mapeo Epitopo , Epítopos de Linfocito T/inmunología , Ensayos Analíticos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II , Activación de Linfocitos , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T
8.
BMC Bioinformatics ; 23(1): 15, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991452

RESUMEN

BACKGROUND: RIFINs and STEVORs are variant surface antigens expressed by P. falciparum that play roles in severe malaria pathogenesis and immune evasion. These two highly diverse multigene families feature multiple paralogs, making their classification challenging using traditional bioinformatic methods. RESULTS: STRIDE (STevor and RIfin iDEntifier) is an HMM-based, command-line program that automates the identification and classification of RIFIN and STEVOR protein sequences in the malaria parasite Plasmodium falciparum. STRIDE is more sensitive in detecting RIFINs and STEVORs than available PFAM and TIGRFAM tools and reports RIFIN subtypes and the number of sequences with a FHEYDER amino acid motif, which has been associated with severe malaria pathogenesis. CONCLUSIONS: STRIDE will be beneficial to malaria research groups analyzing genome sequences and transcripts of clinical field isolates, providing insight into parasite biology and virulence.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Antígenos de Protozoos , Antígenos de Superficie , Eritrocitos , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
9.
Development ; 146(11)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31076487

RESUMEN

Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final 'peduncle' internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering.


Asunto(s)
Flores/crecimiento & desarrollo , Proteínas de Homeodominio/fisiología , Hordeum/crecimiento & desarrollo , Hordeum/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Homología de Secuencia
10.
Malar J ; 21(1): 357, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447234

RESUMEN

BACKGROUND: The ability of malaria rapid diagnostic tests (RDTs) to effectively detect active infections is being compromised by the presence of malaria strains with genomic deletions at the hrp2 and hrp3 loci, encoding the antigens most commonly targeted in diagnostics for Plasmodium falciparum detection. The presence of such deletions can be determined in publically available P. falciparum whole genome sequencing (WGS) datasets. A computational approach was developed and validated, termed Gene Coverage Count and Classification (GC3), to analyse genome-wide sequence coverage data and provide informative outputs to assess presence and coverage profile of a target locus in WGS data. GC3 was applied to detect deletions at hrp2 and hrp3 (hrp2/3) and flanking genes in different geographic regions and across time points. METHODS: GC3 uses Python and R scripts to extract locus read coverage metrics from mapped WGS data according to user-defined parameters and generates relevant tables and figures. GC3 was tested using WGS data for laboratory reference strains with known hrp2/3 genotypes, and its results compared to those of a hrp2/3-specific qPCR assay. Samples with at least 25% of coding region positions with zero coverage were classified as having a deletion. Publicly available sequence data was analysed and compared with published deletion frequency estimates. RESULTS: GC3 results matched the expected coverage of known laboratory reference strains. Agreement between GC3 and a hrp2/3-specific qPCR assay reported for 19/19 (100%) hrp2 deletions and 18/19 (94.7%) hrp3 deletions. Among Cambodian (n = 127) and Brazilian (n = 20) WGS datasets, which had not been previously analysed for hrp2/3 deletions, GC3 identified hrp2 deletions in three and four samples, and hrp3 deletions in 10 and 15 samples, respectively. Plots of hrp2/3 coding regions, grouped by year of sample collection, showed a decrease in median standardized coverage among Malawian samples (n = 150) suggesting the importance of a careful, properly controlled follow up to determine if an increase in frequency of deletions has occurred between 2007-2008 and 2014-2015. Among Malian (n = 90) samples, median standardized coverage was lower in 2002 than 2010, indicating widespread deletions present at the gene locus in 2002. CONCLUSIONS: The GC3 tool accurately classified hrp2/3 deletions and provided informative tables and figures to analyse targeted gene coverage. GC3 is an appropriate tool when performing preliminary and exploratory assessment of locus coverage data.


Asunto(s)
Histidina , Comportamiento del Uso de la Herramienta , Plasmodium falciparum/genética , Secuenciación Completa del Genoma , Genotipo
11.
Malar J ; 21(1): 396, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577996

RESUMEN

Over the past two decades, a considerable expansion of malaria interventions has occurred at the national level in Angola, together with cross-border initiatives and regional efforts in southern Africa. Currently, Angola aims to consolidate malaria control and to accelerate the transition from control to pre-elimination, along with other country members of the Elimination 8 initiative. However, the tremendous heterogeneity in malaria prevalence among Angolan provinces, as well as internal population movements and migration across borders, represent major challenges for the Angolan National Malaria Control Programme. This review aims to contribute to the understanding of factors underlying the complex malaria situation in Angola and to encourage future research studies on transmission dynamics and population structure of Plasmodium falciparum, important areas to complement host epidemiological information and to help reenergize the goal of malaria elimination in the country.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Angola/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Malaria/parasitología , Plasmodium falciparum , Prevalencia , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control
12.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245418

RESUMEN

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Theileria parva/genética , Empalme Alternativo , Animales , Redes Reguladoras de Genes , Genoma de Protozoos , Glicosilación , Ganado/parasitología , Análisis de Secuencia de ARN , Theileria parva/metabolismo
14.
Mol Ecol ; 29(24): 4835-4856, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047351

RESUMEN

Saline migrants into freshwater habitats constitute among the most destructive invaders in aquatic ecosystems throughout the globe. However, the evolutionary and physiological mechanisms underlying such habitat transitions remain poorly understood. To explore the mechanisms of freshwater adaptation and distinguish between adaptive (evolutionary) and acclimatory (plastic) responses to salinity change, we examined genome-wide patterns of gene expression between ancestral saline and derived freshwater populations of the Eurytemora affinis species complex, reared under two different common-garden conditions (0 versus 15 PSU). We found that evolutionary shifts in gene expression (between saline and freshwater inbred lines) showed far greater changes and were more widespread than acclimatory responses to salinity (0 versus 15 PSU). Most notably, 30-40 genes showing evolutionary shifts in gene expression across the salinity boundary were associated with ion transport function, with inorganic cation transmembrane transport forming the largest Gene Ontology category. Of particular interest was the sodium transporter, the Na+ /H+ antiporter (NHA) gene family, which was discovered in animals relatively recently. Thirty key ion regulatory genes, such as NHA paralogue #7, demonstrated concordant evolutionary and plastic shifts in gene expression, suggesting the evolution of ion transporter function and plasticity during rapid invasions into novel salinities. Moreover, freshwater invasions were associated with the evolution of reduced plasticity in the freshwater population, again for the same key ion transporters, consistent with the predicted evolution of canalization following adaptation to stressful conditions. Our results have important implications for understanding evolutionary and physiological mechanisms of range expansions by some of the most widespread invaders in aquatic habitats.


Asunto(s)
Copépodos , Animales , Copépodos/genética , Ecosistema , Agua Dulce , Expresión Génica , Salinidad
15.
Malar J ; 19(1): 135, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228559

RESUMEN

BACKGROUND: Owing to the large amount of host DNA in clinical samples, generation of high-quality Plasmodium falciparum whole genome sequencing (WGS) data requires enrichment for parasite DNA. Enrichment is often achieved by leukocyte depletion of infected blood prior to storage. However, leukocyte depletion is difficult in low-resource settings and limits analysis to prospectively-collected samples. As a result, approaches such as selective whole genome amplification (sWGA) are being used to enrich for parasite DNA. However, sWGA has had limited success in generating reliable sequencing data from low parasitaemia samples. In this study, enzymatic digestion with MspJI prior to sWGA and whole genome sequencing was evaluated to determine whether this approach improved genome coverage compared to sWGA alone. The potential of sWGA to cause amplification bias in polyclonal infections was also examined. METHODS: DNA extracted from laboratory-created dried blood spots was treated with a modification-dependent restriction endonuclease, MspJI, and filtered via vacuum filtration. Samples were then selectively amplified using a previously reported sWGA protocol and subjected to WGS. Genome coverage statistics were compared between the optimized sWGA approach and the previously reported sWGA approach performed in parallel. Differential amplification by sWGA was assessed by comparing WGS data generated from lab-created mixtures of parasite isolates, from the same geographical region, generated with or without sWGA. RESULTS: MspJI digestion did not enrich for parasite DNA. Samples that underwent vacuum filtration (without MspJI digestion) prior to sWGA had the highest parasite DNA concentration and displayed greater genome coverage compared to MspJI + sWGA and sWGA alone, particularly for low parasitaemia samples. The optimized sWGA (filtration + sWGA) approach was successfully used to generate WGS data from 218 non-leukocyte depleted field samples from Malawi. Sequences from lab-created mixtures of parasites did not show evidence of differential amplification of parasite strains compared to directly sequenced samples. CONCLUSION: This optimized sWGA approach is a reliable method to obtain WGS data from non-leukocyte depleted, low parasitaemia samples. The absence of amplification bias in data generated from mixtures of isolates from the same geographic region suggests that this approach can be appropriately used for molecular epidemiological studies.


Asunto(s)
ADN Protozoario/análisis , Plasmodium falciparum/genética , Secuenciación Completa del Genoma/métodos , Malaui , Parasitemia/parasitología , Secuenciación Completa del Genoma/instrumentación
16.
Environ Sci Technol ; 53(3): 1334-1343, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620555

RESUMEN

Recovery of calcium phosphate granules (CaP granules) from high-strength wastewater is an opportunity to reduce the natural phosphorus (P) scarcity, geographic imbalances of P reserves, and eutrophication. Formation of CaP granules was previously observed in an upflow anaerobic sludge bed (UASB) reactor treating source separated black water and is enhanced by Ca2+ addition. However, the required operating conditions and influent composition for CaP granulation are still unknown. In this study, we have experimentally demonstrated that the carbon source and bulk pH are crucial parameters for the formation and growth of CaP granules in a UASB reactor, operating at relatively low upflow velocity (<1 cm h-1). Degradation of glucose yielded sufficient biomass (microbial cells and extracellular biopolymers) to cover crystal and amorphous calcium phosphate [Ca x(PO4) y], forming CaP granules. Influent only containing volatile fatty acids as the carbon source did not generate CaP granules. Moreover, bulk pH between 7.0 and 7.5 was crucial for the enrichment of Ca x(PO4) y in the granules over bulk precipitation. Bulk pH 8 reduced the Ca x(PO4) y enrichment in granules of >1.4 mm diameter from 9 to 5 wt % P. Moreover, for bulk pH 7.5, co-precipitation of CaCO3 with Ca x(PO4) y was reduced.


Asunto(s)
Carbono , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Fosfatos de Calcio , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado
17.
Mol Biol Evol ; 34(8): 1838-1862, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460028

RESUMEN

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.


Asunto(s)
Artrópodos/genética , Receptores Odorantes/genética , Animales , Células Quimiorreceptoras/fisiología , Copépodos/genética , Crustáceos/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Genoma/genética , Insectos/genética , Familia de Multigenes/genética , Filogenia
19.
Development ; 142(13): 2291-303, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25995356

RESUMEN

Notochord-derived Sonic Hedgehog (Shh) is essential for dorsoventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show that Notch signalling augments the response of neuroepithelial cells to Shh, leading to the induction of higher expression levels of the Shh target gene Ptch1 and subsequently induction of more ventral cell fates. Furthermore, we demonstrate that activated Notch1 leads to pronounced accumulation of Smoothened (Smo) within primary cilia and elevated levels of full-length Gli3. Finally, we show that Notch activity promotes longer primary cilia both in vitro and in vivo. Strikingly, these Notch-regulated effects are Shh independent. These data identify Notch signalling as a novel modulator of Shh signalling that acts mechanistically via regulation of ciliary localisation of key components of its transduction machinery.


Asunto(s)
Proteínas Aviares/metabolismo , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Embrión de Pollo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Neuronas Motoras/metabolismo , Células 3T3 NIH , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Tubo Neural/metabolismo , Notocorda/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptor Smoothened , Proteína Gli3 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA